Küstner C, Mitsch J, Hegwein M, Meintker N, Mönks K, Fröhlich M, Wartzack S (2016)
Publication Language: German
Publication Type: Conference contribution
Publication year: 2016
Publisher: TuTech
City/Town: Hamburg
Pages Range: 169-180
Conference Proceedings Title: Design for X - Beiträge zum 27. DfX-Symposium
ISBN: 978-3-946094-09-8
URI: https://www.mfk.uni-erlangen.de?file=pubmfk_57fb6e48b4573
Today, the machine industry offers a range of After-Sales-Services, including the installation and commissioning of the purchased products, the provision of spare parts, inspections or comprehensive maintenance contracts. Studies prove that After-Sales-Services often generate revenues that are several times higher than the original purchase price, which is why these services significantly contribute to a company's balance sheet. Worldwide operation of machines could lead to long machine downtimes before service technicians reach the operating site. Therefore, companies are interested in machine prognostics and predictive maintenance techniques. To accomplish this, an approach for condition-based maintenance in context of the internet of things and the use of data mining is presented in this contribution.
APA:
Küstner, C., Mitsch, J., Hegwein, M., Meintker, N., Mönks, K., Fröhlich, M., & Wartzack, S. (2016). Zustandsdiagnose von Maschinen im Kontext von Industrie 4.0 unter Einsatz von Data-Mining Methoden. In Krause Dieter, Paetzold Kristin, Wartzack Sandro (Hrg.), Design for X - Beiträge zum 27. DfX-Symposium (S. 169-180). Jesteburg, DE: Hamburg: TuTech.
MLA:
Küstner, Christof, et al. "Zustandsdiagnose von Maschinen im Kontext von Industrie 4.0 unter Einsatz von Data-Mining Methoden." Tagungsband Design for X Symposium, Jesteburg Hrg. Krause Dieter, Paetzold Kristin, Wartzack Sandro, Hamburg: TuTech, 2016. 169-180.
BibTeX: Download