Deep Learning-based Inpainting for Virtual DSA

Unberath M, Hajek J, Geimer T, Schebesch F, Amrehn M, Maier A (2017)


Publication Language: English

Publication Type: Conference contribution, Conference Contribution

Publication year: 2017

Publisher: IEEE

Pages Range: -

Conference Proceedings Title: 2017 IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC)

Event location: Hyatt Regency, Atlanta, Georgia US

URI: https://www5.informatik.uni-erlangen.de/Forschung/Publikationen/2017/Unberath17-DLI.pdf

Open Access Link: https://www5.informatik.uni-erlangen.de/Forschung/Publikationen/2017/Unberath17-DLI.pdf

Authors with CRIS profile

How to cite

APA:

Unberath, M., Hajek, J., Geimer, T., Schebesch, F., Amrehn, M., & Maier, A. (2017). Deep Learning-based Inpainting for Virtual DSA. In 2017 IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC) (pp. -). Hyatt Regency, Atlanta, Georgia, US: IEEE.

MLA:

Unberath, Mathias, et al. "Deep Learning-based Inpainting for Virtual DSA." Proceedings of the IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), Hyatt Regency, Atlanta, Georgia IEEE, 2017. -.

BibTeX: Download