Kogut PI, Kupenko OP, Leugering G (2015)
Publication Status: Published
Publication Type: Journal article
Publication year: 2015
Publisher: European Mathematical Society
Book Volume: 34
Pages Range: 199-219
Journal Issue: 2
DOI: 10.4171/ZAA/1536
In this paper we study an optimal control problem for a nonlinear monotone Dirichlet problem where the controls are taken as the matrix-valued coefficients in L-infinity(Omega; R-NxN). Given a suitable cost function, the objective is to provide a substantiation of the first order optimality conditions using the concept of convergence in variable spaces. While in the first part [Z. Anal. Anwend. 34 (2015), 85-108] optimality conditions have been derived and analysed in the general case under some assumptions on the quasi-adjoint states, in this second part, we consider diagonal matrices and analyse the corresponding optimality system without such assumptions.
APA:
Kogut, P.I., Kupenko, O.P., & Leugering, G. (2015). Optimal Control in Matrix-Valued Coefficients for Nonlinear Monotone Problems: Optimality Conditions II. Zeitschrift für Analysis und ihre Anwendungen, 34(2), 199-219. https://doi.org/10.4171/ZAA/1536
MLA:
Kogut, Peter I., Ol'Ga P. Kupenko, and Günter Leugering. "Optimal Control in Matrix-Valued Coefficients for Nonlinear Monotone Problems: Optimality Conditions II." Zeitschrift für Analysis und ihre Anwendungen 34.2 (2015): 199-219.
BibTeX: Download