Abramowski A, Aharonian F, Ait Benkhali F, Akhperjanian AG, Angüner EO, Backes M, Balzer A, Becherini Y, Becker Tjus J, Berge D, Bernhard S, Bernlöhr K, Birsin E, Blackwell R, Böttcher M, Boisson C, Bolmont J, Bordas P, Bregeon J, Brun F, Brun P, Bryan M, Bulik T, Carr J, Casanova S, Chakraborty N, Chalme-Calvet R, Chaves RC, Chen A, Chevalier J, Chrétien M, Colafrancesco S, Cologna G, Condon B, Conrad J, Couturier C, Cui Y, Davids ID, Degrange B, Deil C, DeWilt P, Djannati-Ataï A, Domainko W, Donath A, Drury LO, Dubus G, Dutson K, Dyks J, Dyrda M, Edwards T, Egberts K, Eger P, Ernenwein JP, Espigat P, Farnier C, Fegan S, Feinstein F, Fernandes MV, Fernandez D, Fiasson A, Fontaine G, Förster A, Füßling M, Gabici S, Gajdus M, Gallant YA, Garrigoux T, Giavitto G, Giebels B, Glicenstein JF, Gottschall D, Goyal A, Grondin MH, Grudzińska M, Hadasch D, Häffner S, Hahn J, Hawkes J, Heinzelmann G, Henri G, Hermann G, Hervet O, Hillert A, Hinton JA, Hofmann W, Hofverberg P, Hoischen C, Holler M, Horns D, Ivascenko A, Jacholkowska A, Jamrozy M, Janiak M, Jankowsky F, Jung-Richardt I, Kastendieck MA, Katarzyński K, Katz U, Kerszberg D, Khélifi B, Kieffer M, Klepser S, Klochkov D, Kluźniak W, Kolitzus D, Komin N, Kosack K, Krakau S, Krayzel F, Krüger PP, Laffon H, Lamanna G, Lau J, Lefaucheur J, Lefranc V, Lemière A, Lemoine-Goumard M, Lenain JP, Lohse T, Lopatin A, Lorentz M, Lu CC, Lui R, Marandon V, Marcowith A, Mariaud C, Marx R, Maurin G, Maxted N, Mayer M, Meintjes PJ, Menzler U, Meyer M, Mitchell AM, Moderski R, Mohamed M, Morå K, Moulin E, Murach T, De Naurois M, Niemiec J, Oakes L, Odaka H, Öttl S, Ohm S, Opitz B, Ostrowski M, Oya I, Panter M, Parsons RD, Paz Arribas M, Pekeur NW, Pelletier G, Petrucci PO, Peyaud B, Pita S, Poon H, Prokhorov D, Prokoph H, Pühlhofer G, Punch M, Quirrenbach A, Raab S, Reichardt I, Reimer A, Reimer O, Renaud M, De Los Reyes R, Rieger F, Romoli C, Rosier-Lees S, Rowell G, Rudak B, Rulten CB, Sahakian V, Salek D, Sanchez DA, Santangelo A, Sasaki M, Schlickeiser R, Schüssler F, Schulz A, Schwanke U, Schwemmer S, Seyffert AS, Simoni R, Sol H, Spanier F, Spengler G, Spies F, Stawarz , Steenkamp R, Stegmann C, Stinzing F, Stycz K, Sushch I, Tavernet JP, Tavernier T, Taylor AM, Terrier R, Tluczykont M, Trichard C, Tuffs R, Valerius K, Van Der Walt J, van Eldik C, Van Soelen B, Vasileiadis G, Veh J, Venter C, Viana A, Vincent P, Vink J, Voisin F, Völk HJ, Vuillaume T, Wagner SJ, Wagner P, Wagner RM, Weidinger M, White R, Wierzcholska A, Willmann P, Wörnlein A, Wouters D, Yang R, Zabalza V, Zaborov D, Zacharias M, Zdziarski AA, Zech A, Zefi F, Zywucka N (2018)
Publication Language: English
Publication Status: Published
Publication Type: Journal article, Original article
Publication year: 2018
Publisher: EDP Sciences
Book Volume: 612
Article Number: ARTN A4
DOI: 10.1051/0004-6361/201526545
Aims. We aim for an understanding of the morphological and spectral properties of the supernova remnant RCW 86 and for insights into the production mechanism leading to the RCW 86 very high-energy gamma-ray emission.Methods. We analyzed High Energy Spectroscopic System (H.E.S.S.) data that had increased sensitivity compared to the observations presented in the RCW 86 H.E.S.S. discovery publication. Studies of the morphological correlation between the 0.5-1 keV X-ray band, the 2-5 keV X-ray band, radio, and gamma-ray emissions have been performed as well as broadband modeling of the spectral energy distribution with two different emission models.Results. We present the first conclusive evidence that the TeV gamma-ray emission region is shell-like based on our morphological studies. The comparison with 2-5 keV X-ray data reveals a correlation with the 0.4-50 TeV gamma-ray emission. The spectrum of RCW 86 is best described by a power law with an exponential cutoff at E-cut = (3.5 +/- 1.2(stat)) TeV and a spectral index of Gamma approximate to 1.6 +/- 0.2. A static leptonic one-zone model adequately describes the measured spectral energy distribution of RCW 86, with the resultant total kinetic energy of the electrons above 1 GeV being equivalent to similar to 0.1% of the initial kinetic energy of a Type Ia supernova explosion (10(51) erg). When using a hadronic model, a magnetic field of B approximate to 100 mu G is needed to represent the measured data. Although this is comparable to formerly published estimates, a standard E-2 spectrum for the proton distribution cannot describe the gamma-ray data. Instead, a spectral index of Gamma(p) approximate to 1.7 would be required, which implies that similar to 7 x 10(49)/n(cm-3) erg has been transferred into high-energy protons with the effective density n(cm-3) = n/1 cm(-3). This is about 10% of the kinetic energy of a typical Type Ia supernova under the assumption of a density of 1 cm(-3).
APA:
Abramowski, A., Aharonian, F., Ait Benkhali, F., Akhperjanian, A.G., Angüner, E.O., Backes, M.,... Zywucka, N. (2018). Detailed spectral and morphological analysis of the shell type SNR RCW 86. Astronomy & Astrophysics, 612. https://doi.org/10.1051/0004-6361/201526545
MLA:
Abramowski, A., et al. "Detailed spectral and morphological analysis of the shell type SNR RCW 86." Astronomy & Astrophysics 612 (2018).
BibTeX: Download