Momentum maps for smooth projective unitary representations

Janssens B, Neeb KH (2016)


Publication Type: Book chapter / Article in edited volumes

Publication year: 2016

Publisher: Springer-Birkhäuser

Edited Volumes: Geometric Methods in Physics. XXXIV Workshop 2015

Series: Trends in Mathematics

Book Volume: II

Pages Range: 115-127

ISBN: 978-3-319-31755-7

URI: https://arxiv.org/abs/1510.08257

DOI: 10.1007/978-3-319-31756-4_12

Abstract

For a smooth projective unitary representation of a locally convex Lie group G, the projective space of smooth vectors is a locally convex Kaehler manifold. We show that the action of G on this space is weakly Hamiltonian, and lifts to a Hamiltonian action of the central U(1)-extension of G obtained from the projective representation. We identify the non-equivariance cocycles obtained from the weakly Hamiltonian action with those obtained from the projective representation, and give some integrality conditions on the image of the momentum map.

Authors with CRIS profile

Involved external institutions

How to cite

APA:

Janssens, B., & Neeb, K.H. (2016). Momentum maps for smooth projective unitary representations. In Kielanowski P., Bieliavsky P., Odesskii A., Odzijewicz A., Schlichenmaier M., Voronov T. (Eds.), Geometric Methods in Physics. XXXIV Workshop 2015. (pp. 115-127). Springer-Birkhäuser.

MLA:

Janssens, Bas, and Karl Hermann Neeb. "Momentum maps for smooth projective unitary representations." Geometric Methods in Physics. XXXIV Workshop 2015. Ed. Kielanowski P., Bieliavsky P., Odesskii A., Odzijewicz A., Schlichenmaier M., Voronov T., Springer-Birkhäuser, 2016. 115-127.

BibTeX: Download