A Platform for Dynamic Exploration of the Cooperative Health Research in South Tyrol Study Data via Multi-Level Network Medicine (DyHealthNet)

Third party funded individual grant


Acronym: DyHealthNet

Start date : 01.12.2023

End date : 30.11.2026

Website: https://www.dyhealthnet.ai/


Project details

Scientific Abstract

The Cooperative Health Research in South Tyrol (CHRIS) study offers a comprehensive overview of the health state of >13,000 adults in the middle and upper Val Venosta. It is the largest population-based molecular study in Italy with a longitudinal lookout to investigate the genetic and molecular basis of age-related common chronic conditions and their interaction with lifestyle and environment in the general population. In CHRIS, the combination of molecular profiling data, such as genomics and metabolomics, together with important baseline clinical and lifestyle data offers vast opportunities for understanding physiological changes that could lead to clinical complications or indicate the prevalence or early onset of diseases together with their molecular underpinnings. 

Where disease-focused studies often have a clear hypothesis that dictates the necessary statistical analyses, population-based cohorts such as CHRIS are more versatile and allow both testing existing hypotheses as well as generating new hypotheses that arise from statistically significant associations of the available data. Ideally, this type of explorative analysis is open to biomedical researchers that do not necessarily have experience with data analysis or machine learning. Network-based approaches are ideally suited for studying heterogeneous biomedical data, giving rise to the field of network medicine. However, network medicine techniques have so far mainly been used in the context of studies focusing on individual diseases. Network-based platforms for the explorative analysis of population-based cohort data do not exist.

In DyHealthNet, we will close this gap and develop a network-based data analysis platform, which will allow to integrate heterogeneous data and support explorative data analytics over dynamically generated subsets of the CHRIS study data. To fully leverage the potential of the available multi-level data, the DyHealthNet platform combines (1) data integration using standardized medical information models (HL7 FHIR), (2) innovative index structures for scalable dynamic analysis, (3) machine learning, and (4) visual analytics. DyHealthNet will render the CHRIS population cohort data accessible for state-of-the-art privacy-preserving, network-based data analysis. DyHealthNet will hence enable mining of context-specific pathomechanisms for precision medicine, and will serve as a blueprint for dynamic explorative analysis of multi-level cohort data worldwide. To achieve these objectives, the DyHeathNet consortium combines expertise in population-based cohort studies (Fuchsberger) and in the development of complex algorithms for the analysis of molecular networks (Blumenthal), applied biomedical AI and software systems (List), and customized index structures for scalable data management (Gamper).

Involved:

Contributing FAU Organisations:

Funding Source

Research Areas