Modeling and Simulation of Three-Dimensional Vehicular Ad Hoc Networks

Internally funded project


Start date : 01.10.2017

End date : 30.09.2022


Project details

Scientific Abstract

The possibilities and challenges of vehicle-to-everything communication (V2X communication) have been being researched for several years already. A popular means allowing for sufficient flexibility in the investigations whilst maintaining a relatively high level of detail is the simulation of such networks, which must take both the traffic as well as communication aspects into account. The simulation framework Veins developed at the chair has already proven to be a successful tool.

A limitation of current V2X simulation frameworks is the assumption of a quasi-two-dimensional environment. The various influences of terrain shape, other road participants or communication across multiple road levels usually remain unconsidered. However, due to the mentioned aspects, many real-world traffic scenarios and thus vehicular networks exhibit a three-dimensional character, which is why it must be assumed that they can be analyzed only limitedly with current simulators.

In this project, we seek to investigate whether the above-mentioned assumption holds true. For this purpose, conventional packet-based V2X simulation has to be extended accordingly in order to be able to simulate such scenarios at large scale. This also requires the implementation of new channel models that can realistically depict the three-dimensional character of complex scenarios with limited computational effort. To ensure correct results the new simulation models should be validated with the help of appropriate field tests. Furthermore, the computational effort of complex simulation scenarios is to be reduced by means of suitable techniques and possibly AI methods.

Involved:

Contributing FAU Organisations:

Research Areas