Theoretische Grenzen und algorithmische Verfahren verteilter komprimierender Abtastung

Third party funded individual grant


Start date : 01.07.2018

End date : 30.06.2021

Extension date: 31.12.2021


Project details

Short description

The theoretical limits of distributed compressive sensing are studied by
tools from both information theory and statistical physics. The investigations
cover both noise-free and noisy distributed compressive sensing. The theoretical insights
are utilized to design approximate message passing algorithms for joint recovery of large distributed compressive sensing networks with feasible computational complexity. These algo-
rithms enable us to verify the non-rigorous results obtained by the replica method from statistical mechanics, and also, to propose theoretically optimal approaches for sampling and low complexity. The proposed research will lead to improved performance of reconstruction algorithms for distributed compressive sensing, e.g. higher compression rates and/or higher fidelity of reconstruction.

Scientific Abstract

The theoretical limits of distributed compressive sensing are studied by
tools from both information theory and statistical physics. The investigations
cover both noise-free and noisy distributed compressive sensing. The theoretical insights
are utilized to design approximate message passing algorithms for joint recovery of large distributed compressive sensing networks with feasible computational complexity. These algo-
rithms enable us to verify the non-rigorous results obtained by the replica method from statistical mechanics, and also, to propose theoretically optimal approaches for sampling and low complexity. The proposed research will lead to improved performance of reconstruction algorithms for distributed compressive sensing, e.g. higher compression rates and/or higher fidelity of reconstruction.

Involved:

Contributing FAU Organisations:

Funding Source