Laura Pfaff



close-button

Types of publications

Journal article
Book chapter / Article in edited volumes
Authored book
Translation
Thesis
Edited Volume
Conference contribution
Other publication type
Unpublished / Preprint

Publication year

From
To

Abstract

Journal

Virtual DSA for Learning Contrast Agent Dynamics in Projection Space (2025) Maul N, Birkhold A, Thies M, Vysotskaya N, Wagner F, Pfaff L, Kowarschik M, Maier A Conference contribution Enhancing diffusion-weighted prostate MRI through self-supervised denoising and evaluation (2024) Pfaff L, Darwish O, Wagner F, Thies M, Vysotskaya N, Hoßbach J, Weiland E, et al. Journal article Differentiable Score-Based Likelihoods: Learning CT Motion Compensation from Clean Images (2024) Thies M, Maul N, Mei S, Pfaff L, Vysotskaya N, Gu M, Utz J, et al. Conference contribution On the influence of smoothness constraints in computed tomography motion compensation (2024) Thies M, Wagner F, Maul N, Mei S, Gu M, Pfaff L, Vysotskaya N, et al. Conference contribution, Original article Self-supervised MRI denoising: leveraging Stein’s unbiased risk estimator and spatially resolved noise maps (2023) Pfaff L, Hoßbach J, Preuhs E, Wagner F, Arroyo Camejo S, Kannengiesser S, Nickel D, et al. Journal article Gradient-based geometry learning for fan-beam CT reconstruction (2023) Thies M, Wagner F, Maul N, Folle L, Meier M, Rohleder M, Schneider LS, et al. Journal article, Original article Geometric Constraints Enable Self-Supervised Sinogram Inpainting in Sparse-View Tomography (2023) Wagner F, Thies M, Maul N, Pfaff L, Aust O, Pechmann S, Syben C, Maier A Conference contribution, Conference Contribution On the Benefit of Dual-Domain Denoising in a Self-Supervised Low-Dose CT Setting (2023) Wagner F, Thies M, Pfaff L, Aust O, Pechmann S, Weidner D, Maul N, et al. Conference contribution Optimizing CT Scan Geometries With and Without Gradients (2023) Thies M, Wagner F, Maul N, Pfaff L, Schneider LS, Syben C, Maier A Conference contribution, Original article Noise2Contrast: Multi-contrast Fusion Enables Self-supervised Tomographic Image Denoising (2023) Wagner F, Thies M, Pfaff L, Maul N, Pechmann S, Gu M, Utz J, et al. Conference contribution