Journal article


Low-Energy Electron Potentiometry: Contactless Imaging of Charge Transport on the Nanoscale


Publication Details
Author(s): Kautz J, Jobst J, Sorger C, Tromp RM, Weber HB, Van Der Molen SJ
Publisher: Nature Publishing Group: Open Access Journals - Option B
Publication year: 2015
Volume: 5
ISSN: 2045-2322

Abstract

Charge transport measurements form an essential tool in condensed matter physics. The usual approach is to contact a sample by two or four probes, measure the resistance and derive the resistivity, assuming homogeneity within the sample. A more thorough understanding, however, requires knowledge of local resistivity variations. Spatially resolved information is particularly important when studying novel materials like topological insulators, where the current is localized at the edges, or quasi-two-dimensional (2D) systems, where small-scale variations can determine global properties. Here, we demonstrate a new method to determine spatially-resolved voltage maps of current-carrying samples. This technique is based on low-energy electron microscopy (LEEM) and is therefore quick and non-invasive. It makes use of resonance-induced contrast, which strongly depends on the local potential. We demonstrate our method using single to triple layer graphene. However, it is straightforwardly extendable to other quasi-2D systems, most prominently to the upcoming class of layered van der Waals materials.



Focus Area of Individual Faculties


How to cite
APA: Kautz, J., Jobst, J., Sorger, C., Tromp, R.M., Weber, H.B., & Van Der Molen, S.J. (2015). Low-Energy Electron Potentiometry: Contactless Imaging of Charge Transport on the Nanoscale. Scientific Reports, 5. https://dx.doi.org/10.1038/srep13604

MLA: Kautz, J., et al. "Low-Energy Electron Potentiometry: Contactless Imaging of Charge Transport on the Nanoscale." Scientific Reports 5 (2015).

BibTeX: Download


External Organisations
Share link
Last updated on 2017-09-21 at 03:05
PDF downloaded successfully