Journal article


Linking covariant and canonical loop quantum gravity: New solutions to the Euclidean scalar constraint


Publication Details
Author(s): Alesci E, Thiemann T, Zipfel A
Publisher: AMER PHYSICAL SOC
Publication year: 2012
Volume: 86
Journal issue: 2
ISSN: 1550-7998

Abstract

It is often emphasized that spin-foam models could realize a projection on the physical Hilbert space of canonical loop quantum gravity. As a first test, we analyze the one-vertex expansion of a simple Euclidean spin foam. We find that for fixed Barbero-Immirzi parameter gamma = 1, the one-vertex amplitude in the Kaminski, Kisielowski, and Lewandowski prescription annihilates the Euclidean Hamiltonian constraint of loop quantum gravity [T. Thiemann, Classical Quantum Gravity 15, 839 (1998).]. Since, for gamma = 1, the Lorentzian part of the Hamiltonian constraint does not contribute, this gives rise to new solutions of the Euclidean theory. Furthermore, we find that the new states only depend on the diagonal matrix elements of the volume. This seems to be a generic property when applying the spin-foam projector.



How to cite
APA: Alesci, E., Thiemann, T., & Zipfel, A. (2012). Linking covariant and canonical loop quantum gravity: New solutions to the Euclidean scalar constraint. Physical Review D, 86(2). https://dx.doi.org/10.1103/PhysRevD.86.024017

MLA: Alesci, Emanuele, Thomas Thiemann, and Antonia Zipfel. "Linking covariant and canonical loop quantum gravity: New solutions to the Euclidean scalar constraint." Physical Review D 86.2 (2012).

BibTeX: Download
Share link
Last updated on 2017-11-22 at 03:04
PDF downloaded successfully