Della Pietra F, Fantuzzi G, Ignat LI, Masiello AL, Paoli G, Zuazua Iriondo E (2024)
Publication Type: Journal article
Publication year: 2024
Book Volume: 31
Pages Range: 497-523
Journal Issue: 2
We consider finite element approximations to the optimal constant for the Hardy inequality with exponent p = 2 in bounded domains of dimension n = 1 or n ≥ 3. For finite element spaces of piecewise linear and continuous functions on a mesh of size h, we prove that the approximate Hardy constant converges to the optimal Hardy constant at a rate proportional to 1/|log h|2. This result holds in dimension n = 1, in any dimension n ≥ 3 if the domain is the unit ball and the finite element discretization exploits the rotational symmetry of the problem, and in dimension n = 3 for general finite element discretizations of the unit ball. In the first two cases, our estimates show excellent quantitative agreement with values of the discrete Hardy constant obtained computationally.
APA:
Della Pietra, F., Fantuzzi, G., Ignat, L.I., Masiello, A.L., Paoli, G., & Zuazua Iriondo, E. (2024). Finite Element Approximation of the Hardy Constant. Journal of Convex Analysis, 31(2), 497-523.
MLA:
Della Pietra, Francesco, et al. "Finite Element Approximation of the Hardy Constant." Journal of Convex Analysis 31.2 (2024): 497-523.
BibTeX: Download