Coclite GM, Coron JM, De Nitti N, Keimer A, Pflug L (2023)
Publication Type: Journal article
Publication year: 2023
Book Volume: 40
Pages Range: 1205-1223
Journal Issue: 5
DOI: 10.4171/AIHPC/58
We deal with the problem of approximating a scalar conservation law by a conservation law with nonlocal flux. As convolution kernel in the nonlocal flux, we consider an exponential-type approximation of the Dirac distribution. We then obtain a total variation bound on the nonlocal term and can prove that the (unique) weak solution of the nonlocal problem converges strongly in C.L1
APA:
Coclite, G.M., Coron, J.M., De Nitti, N., Keimer, A., & Pflug, L. (2023). A general result on the approximation of local conservation laws by nonlocal conservation laws: The singular limit problem for exponential kernels. Annales de l'Institut Henri Poincaré - Analyse Non Linéaire, 40(5), 1205-1223. https://doi.org/10.4171/AIHPC/58
MLA:
Coclite, Giuseppe Maria, et al. "A general result on the approximation of local conservation laws by nonlocal conservation laws: The singular limit problem for exponential kernels." Annales de l'Institut Henri Poincaré - Analyse Non Linéaire 40.5 (2023): 1205-1223.
BibTeX: Download