Matek C, Marr C, von Bergwelt-Baildon M, Spiekermann K (2023)
Publication Type: Journal article
Publication year: 2023
Book Volume: 148
Pages Range: 1108-1112
Journal Issue: 17
DOI: 10.1055/a-1965-7044
The manual examination of blood and bone marrow specimens for leukemia patients is time-consuming and limited by intra- and inter-observer variance. The development of AI algorithms for leukemia diagnostics requires high-quality sample digitization and reliable annotation of large datasets. Deep learning-based algorithms using these datasets attain human-level performance for some well-defined, clinically relevant questions such as the blast character of cells. Methods such as multiple - instance - learning allow predicting diagnoses from a collection of leukocytes, but are more data-intensive. Using "explainable AI" methods can make the prediction process more transparent and allow users to verify the algorithm's predictions. Stability and robustness analyses are necessary for routine application of these algorithms, and regulatory institutions are developing standards for this purpose. Integrated diagnostics, which link different diagnostic modalities, offer the promise of even greater accuracy but require more extensive and diverse datasets.
APA:
Matek, C., Marr, C., von Bergwelt-Baildon, M., & Spiekermann, K. (2023). Künstliche Intelligenz für die computerunterstützte Leukämiediagnostik. Deutsche Medizinische Wochenschrift, 148(17), 1108-1112. https://dx.doi.org/10.1055/a-1965-7044
MLA:
Matek, Christian, et al. "Künstliche Intelligenz für die computerunterstützte Leukämiediagnostik." Deutsche Medizinische Wochenschrift 148.17 (2023): 1108-1112.
BibTeX: Download