Applicability of two hybrid sound prediction methods for assessing in-duct sound absorbers of turbocharger compressors

Freidhager C, Schoder S, Maurerlehner P, Renz A, Becker S, Kaltenbacher M (2022)


Publication Type: Journal article

Publication year: 2022

Journal

Book Volume: 6

DOI: 10.1051/aacus/2022025

Abstract

We analyze the differences between the Ffowcs-Williams and Hawking's approach and a new sound propagation approach based on the finite element method used for solving Lighthill's aeroacoustic wave equation for compressible flows. In addition, we discuss the applicability of both methods. The sound propagation approach based on Lighthill's equation introduces a flow-interface boundary condition, similar to permeable boundaries in the Ffowcs-Williams and Hawking's analogy, which allows the omission of complex geometries in propagation domains. This enables to reduce numeric effort and storage requirements. Thereby, the hybrid aeroacoustic workflow is considered, for which aeroacoustic source terms are computed to couple a flow and a separated acoustic propagation simulation. We present an extensive investigation of Lighthill's source terms in the sense of the proposed weak formulation of Lighthill's equation. For validation, measurements from a cold gas test rig are used. In addition, the possibilities of applying both sound propagation methods for investigating the influence of resonators and sound absorbers are discussed.

Authors with CRIS profile

Involved external institutions

How to cite

APA:

Freidhager, C., Schoder, S., Maurerlehner, P., Renz, A., Becker, S., & Kaltenbacher, M. (2022). Applicability of two hybrid sound prediction methods for assessing in-duct sound absorbers of turbocharger compressors. Acta Acustica, 6. https://dx.doi.org/10.1051/aacus/2022025

MLA:

Freidhager, Clemens, et al. "Applicability of two hybrid sound prediction methods for assessing in-duct sound absorbers of turbocharger compressors." Acta Acustica 6 (2022).

BibTeX: Download