Canales DA, Reyes F, Saavedra M, Peponi L, Leonés A, Palza H, Boccaccini AR, Grünewald A, Zapata PA (2022)
Publication Type: Journal article
Publication year: 2022
Book Volume: 210
Pages Range: 324-336
DOI: 10.1016/j.ijbiomac.2022.05.047
Electrospun fibers of poly (lactic acid) (PLA) containing 10 and 20 wt% of bioactive glass (n-BG) and magnesium oxide (n-MgO) nanoparticles of ca. 27 and 23 nm respectively, were prepared toward to application in bone tissue engineering. The addition of both nanoparticles into the PLA will produce a synergic effect increasing its bioactivity and antimicrobial behavior. Neat PLA scaffold and the composites with MgO showed an average fiber diameter of 1.7 ± 0.6 μm, PLA/n-BG and PLA/n-BG/n-MgO fibers presented a significant diameter increase reaching values of ca. 3.1 ± 0.8 μm. Young's modulus of the electrospun scaffolds was affected by the direct presence of the particle and scaffold morphologies. All the composites having n-BG presented bioactivity through the precipitation of hydroxyapatite structures on the surface. Although n-MgO did not add bioactivity to the PLA fibers, they were able to render antimicrobial characteristics reducing the S. aureus viability around 30%, although an effect on E. coli strain was not observed. PLA/n-BG nanocomposites did not display any significant antimicrobial behavior. The different composites increased the alkaline phosphatase (ALP) expression as compared with pure PLA barely affecting the cell viability, meaning a good osteoblastic phenotype expression capacity, with PLA/n-BG presenting the highest osteoblastic expression.
APA:
Canales, D.A., Reyes, F., Saavedra, M., Peponi, L., Leonés, A., Palza, H.,... Zapata, P.A. (2022). Electrospun fibers of poly (lactic acid) containing bioactive glass and magnesium oxide nanoparticles for bone tissue regeneration. International Journal of Biological Macromolecules, 210, 324-336. https://doi.org/10.1016/j.ijbiomac.2022.05.047
MLA:
Canales, Daniel A., et al. "Electrospun fibers of poly (lactic acid) containing bioactive glass and magnesium oxide nanoparticles for bone tissue regeneration." International Journal of Biological Macromolecules 210 (2022): 324-336.
BibTeX: Download