Synthetic fundus fluorescein angiography using deep neural networks

Schiffers F, Yu Z, Arguin S, Maier A, Ren Q (2018)


Publication Type: Conference contribution

Publication year: 2018

Journal

Publisher: Springer Berlin Heidelberg

Pages Range: 234-238

Conference Proceedings Title: Informatik aktuell

Event location: Erlangen, DEU

DOI: 10.1007/978-3-662-56537-7_64

Abstract

Fundus fluorescein angiography yields complementary image information when compared to conventional fundus imaging. Angiographic imaging, however, may pose risks of harm to the patient. The output from both types of imaging have different characteristics, but the most prominent features of the fundus are shared in both images. Thus, the question arises if conventional fundus images alone provide enough information to synthesize an angiographic image. Our research analyzes the capacity of deep neural networks to synthesize virtual angiographic images from their conventional fundus counterparts.

Authors with CRIS profile

Involved external institutions

How to cite

APA:

Schiffers, F., Yu, Z., Arguin, S., Maier, A., & Ren, Q. (2018). Synthetic fundus fluorescein angiography using deep neural networks. In Heinz Handels, Thomas Tolxdorff, Thomas M. Deserno, Klaus H. Maier-Hein, Andreas Maier, Christoph Palm (Eds.), Informatik aktuell (pp. 234-238). Erlangen, DEU: Springer Berlin Heidelberg.

MLA:

Schiffers, Florian, et al. "Synthetic fundus fluorescein angiography using deep neural networks." Proceedings of the Workshop on Bildverarbeitung fur die Medizin, 2018, Erlangen, DEU Ed. Heinz Handels, Thomas Tolxdorff, Thomas M. Deserno, Klaus H. Maier-Hein, Andreas Maier, Christoph Palm, Springer Berlin Heidelberg, 2018. 234-238.

BibTeX: Download