Wear in wind turbine pitch bearings—A comparative design study

Schwack F, Halmos F, Stammler M, Poll G, Glavatskih S (2021)


Publication Type: Journal article

Publication year: 2021

Journal

DOI: 10.1002/we.2693

Abstract

We tested two types of ball bearings with an outer diameter of 750 mm to learn more about the challenges of oscillating motions for pitch bearings. The experimental conditions are derived from aero-elastic simulations, long-term wind speed measurements and a scaling method that considers loads and pitch angles. As a result, the parameters relevant for pitch bearings are represented appropriately, and the findings are transferable to other bearing sizes. For the tested parameter sets, severe wear occurred for over 90% of the exposed contact areas after 12 500 oscillating cycles. Decreasing the number of cycles to 1250 leads to a mix of exposed areas with 13% severe wear, 32% mild wear and 55% no wear, with no apparent pattern. The results demonstrate that a comparatively small amount of consecutive cycles can lead to severe wear. A new type of bearing tested showed less wear for the selected operating conditions.

Authors with CRIS profile

Involved external institutions

How to cite

APA:

Schwack, F., Halmos, F., Stammler, M., Poll, G., & Glavatskih, S. (2021). Wear in wind turbine pitch bearings—A comparative design study. Wind Energy. https://dx.doi.org/10.1002/we.2693

MLA:

Schwack, Fabian, et al. "Wear in wind turbine pitch bearings—A comparative design study." Wind Energy (2021).

BibTeX: Download