Datengetriebene Methoden zur Bestimmung von Position und Orientierung in funk‐ und trägheitsbasierter Koppelnavigation

Feigl T (2021)


Publication Language: German

Publication Type: Thesis

Publication year: 2021

Publisher: Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)

City/Town: OPUS FAU

ISBN: urn:nbn:de:bvb:29-opus4-1

URI: https://nbn-resolving.org/urn:nbn:de:bvb:29-opus4-173550

Abstract

Standortbezogene Unterhaltung ist mittlerweile zu einem Grundbedürfnis geworden. Die erforderliche Genauigkeit und Zuverlässigkeit von Lokalisierungssystemen wächst nicht nur für intelligente Systeme wie selbstfahrende Fahrzeuge, Lieferdrohnen und mobile Geräte, sondern auch für alltägliche Fußgänger. Aufgrund der allgegenwärtigen Sensoren wie Kameras, GPS und Trägheitssensoren werden mit aufwendig handgefertigten Modellen und Algorithmen eine Vielzahl von Lokalisierungssystemen entwickelt. Um eine Einschränkung der freien Sicht und unterschiedliche Lichtverhältnisse von Kamerasystemen zu vermeiden werden typischerweise Funk- und Trägheitssensoren zur Lokalisierung verwendet. Unter idealen Laborbedingungen können diese Sensoren und Modelle, Positionen und Orientierungen langfristig genau abschätzen. In realen Umgebungen wirken sich jedoch viele Probleme wie ungenaue Systemmodellierung, unvollständige Sensormessungen, Rauschen und komplexe Umgebungsdynamiken auf die Genauigkeit und Zuverlässigkeit aus. Individuell betrachtet haben Funk- und Trägheitssensoren Schwierigkeiten: Funk lokalisiert aufgrund mehrerer Pfade durch statische oder dynamische Objekte entlang der Ausbreitungspfade zwischen Sender und Empfänger sehr ungenau. Im Gegensatz dazu akkumulieren Trägheitssensoren im Laufe der Zeit Entfernungs- und Orientierungsfehler und können keinen absoluten Bezug zur Weltkarte herstellen. Verfahren des Stands der Technik ergänzen beide Sensoren, um komplementäre Effekte zu verwenden, können jedoch die Schwierigkeiten nicht beheben. Darüber hinaus können sie mit einfachen Bewegungsmodellen wie konstanter Beschleunigung oder Geschwindigkeit keine stark nichtlinearen menschlichen Bewegungen beschreiben.

Das Hauptziel dieser Arbeit ist es daher, die Auswirkungen datengetriebener Methoden und verschiedener Sensordatenströme von lose platzierten Sensoren auf die Genauigkeit der Schätzung menschlicher Posen in hochdynamischen Situationen zu untersuchen. Die absolute Genauigkeit der erhaltenen Ergebnisse wird mit Filtermethoden nach dem Stand der Technik verglichen. Um die Probleme von Menschen entworfenen Lokalisierungsmodellen zu lösen, werden in dieser Arbeit maschinelle und tiefe Lernmethoden verwendet. Es werden Lernmethoden zur Positions‐, Geschwindigkeits- und Orientierungsschätzung sowie zur Rekonstruktion der Trajektorie unter Verwendung multimodaler Messungen von Funk- und Trägheitssensoren vorgestellt, um eine genaue und robuste Lokalisierung zu erreichen. Die Auswirkungen datengetriebener Verfahren entlang einer typischen Verarbeitungskette für die Lokalisierung mit Funk- und Trägheitssensoren werden untersucht. Die Verarbeitungskette ist lose gekoppelt in atomare Komponenten unterteilt, sodass jedes datengetriebene Verfahren problemlos ausgetauscht werden kann. Sequenzbasierte Lernmethoden werden entlang der Verarbeitungskette verwendet, um absolute Positionen aus Ankunftszeitstempeln von Funksignalen mit Mehrwegeausbreitung zu schätzen, ungerichtete Geschwindigkeitsvektoren von Trägheitssensoren zu schätzen, Bewegungsmuster zu klassifizieren, die die Ausrichtung der Trajektorie kalibrieren und um schließlich die einzelnen Komponenten zu einer Trajektorie zu fusionieren. Die vorgeschlagenen Methoden lernen, mit unterschiedlichem Bewegungsverhalten umzugehen und ermöglichen eine robuste und präzise Lokalisierung. Im Rahmen von Großstudien werden Mess- und Referenzdaten mit verschiedenen Bewegungsformen bei unterschiedlichen Geschwindigkeiten erfasst. Umfangreiche Experimente zeigen die Wirksamkeit und das Potenzial der vorgeschlagenen Methoden. Die datengetriebene, modulare Verarbeitungskette liefert genauere und robustere Schätzungen als bekannte Verfahren, auch bei dynamischen Bewegungen mit verrauschten Trägheitssensoren und Funkumgebungen mit Mehrwegeausbreitung.

Authors with CRIS profile

Related research project(s)

How to cite

APA:

Feigl, T. (2021). Datengetriebene Methoden zur Bestimmung von Position und Orientierung in funk‐ und trägheitsbasierter Koppelnavigation (Dissertation).

MLA:

Feigl, Tobias. Datengetriebene Methoden zur Bestimmung von Position und Orientierung in funk‐ und trägheitsbasierter Koppelnavigation. Dissertation, OPUS FAU: Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 2021.

BibTeX: Download