Biccari U, Warma M, Zuazua E (2018)
Publication Type: Book chapter / Article in edited volumes
Publication year: 2018
Publisher: Springer International Publishing
Edited Volumes: SEMA SIMAI Springer Series
Series: SEMA SIMAI Springer Series
Book Volume: 17
Pages Range: 233-249
DOI: 10.1007/978-3-319-97613-6_12
We prove the maximal local regularity of weak solutions to the parabolic problem associated with the fractional Laplacian with homogeneous Dirichlet boundary conditions on an arbitrary bounded open set Ω ⊂ ℝN. Proofs combine classical abstract regularity results for parabolic equations with some new local regularity results for the associated elliptic problems.
APA:
Biccari, U., Warma, M., & Zuazua, E. (2018). Local regularity for fractional heat equations. In SEMA SIMAI Springer Series. (pp. 233-249). Springer International Publishing.
MLA:
Biccari, Umberto, Mahamadi Warma, and Enrique Zuazua. "Local regularity for fractional heat equations." SEMA SIMAI Springer Series. Springer International Publishing, 2018. 233-249.
BibTeX: Download