Deep Learning Compatible Differentiable X-ray Projections for Inverse Rendering

Shetty K, Birkhold A, Strobel N, Jaganathan S, Kowarschik M, Maier A, Egger B (2021)


Publication Type: Conference contribution

Publication year: 2021

Journal

Publisher: Springer Science and Business Media Deutschland GmbH

Pages Range: 290-295

Conference Proceedings Title: Informatik aktuell

Event location: Regensburg DE

ISBN: 9783658331979

DOI: 10.1007/978-3-658-33198-6_70

Authors with CRIS profile

Additional Organisation(s)

Involved external institutions

How to cite

APA:

Shetty, K., Birkhold, A., Strobel, N., Jaganathan, S., Kowarschik, M., Maier, A., & Egger, B. (2021). Deep Learning Compatible Differentiable X-ray Projections for Inverse Rendering. In Christoph Palm, Heinz Handels, Klaus Maier-Hein, Thomas M. Deserno, Andreas Maier, Thomas Tolxdorff (Eds.), Informatik aktuell (pp. 290-295). Regensburg, DE: Springer Science and Business Media Deutschland GmbH.

MLA:

Shetty, Karthik, et al. "Deep Learning Compatible Differentiable X-ray Projections for Inverse Rendering." Proceedings of the German Workshop on Medical Image Computing, 2021, Regensburg Ed. Christoph Palm, Heinz Handels, Klaus Maier-Hein, Thomas M. Deserno, Andreas Maier, Thomas Tolxdorff, Springer Science and Business Media Deutschland GmbH, 2021. 290-295.

BibTeX: Download