Many-particle limit for a system of interaction equations driven by Newtonian potentials

Di Francesco M, Esposito A, Schmidtchen M (2021)


Publication Language: English

Publication Status: Submitted

Publication Type: Journal article

Future Publication Type: Journal article

Publication year: 2021

Journal

URI: https://arxiv.org/pdf/2008.11106.pdf

DOI: 10.1007/s00526-021-01960-4

Abstract

We consider a discrete particle system of two species coupled through nonlocal interactions driven by the one-dimensional Newtonian potential, with repulsive self-interaction and attractive cross-interaction. After providing a suitable existence theory in a finite-dimensional framework, we explore the behaviour of the particle system in case of collisions and analyse the behaviour of the solutions with initial data featuring particle clusters. Subsequently, we prove that the empirical measure associated to the particle system converges to the unique 2-Wasserstein gradient flow solution of a system of two partial differential equations (PDEs) with nonlocal interaction terms in a proper measure sense. The latter result uses uniform estimates of the Lm-norms of a piecewise constant reconstruction of the density using the particle trajectories.

Authors with CRIS profile

Involved external institutions

How to cite

APA:

Di Francesco, M., Esposito, A., & Schmidtchen, M. (2021). Many-particle limit for a system of interaction equations driven by Newtonian potentials. Calculus of Variations and Partial Differential Equations. https://dx.doi.org/10.1007/s00526-021-01960-4

MLA:

Di Francesco, Marco, Antonio Esposito, and Markus Schmidtchen. "Many-particle limit for a system of interaction equations driven by Newtonian potentials." Calculus of Variations and Partial Differential Equations (2021).

BibTeX: Download