Tian J, Wang J, Xue Q, Niu T, Yan L, Zhu Z, Li N, Brabec C, Yip HL, Cao Y (2020)
Publication Type: Journal article
Publication year: 2020
Book Volume: 30
Journal Issue: 28
Cesium-based inorganic perovskites have recently attracted great research focus due to their excellent optoelectronic properties and thermal stability. However, the operational instability of all-inorganic perovskites is still a main hindrance for the commercialization. Herein, a facile approach is reported to simultaneously enhance both the efficiency and long-term stability for all-inorganic CsPbI2.5Br0.5 perovskite solar cells via inducing excess lead iodide (PbI2) into the precursors. Comprehensive film and device characterizations are conducted to study the influences of excess PbI2 on the crystal quality, passivation effect, charge dynamics, and photovoltaic performance. It is found that excess PbI2 improves the crystallization process, producing high-quality CsPbI2.5Br0.5 films with enlarged grain sizes, enhanced crystal orientation, and unchanged phase composition. The residual PbI2 at the grain boundaries also provides a passivation effect, which improves the optoelectronic properties and charge collection property in optimized devices, leading to a power conversion efficiency up to 17.1% with a high open-circuit voltage of 1.25 V. More importantly, a remarkable long-term operational stability is also achieved for the optimized CsPbI2.5Br0.5 solar cells, with less than 24% degradation drop at the maximum power point under continuous illumination for 420 h.
APA:
Tian, J., Wang, J., Xue, Q., Niu, T., Yan, L., Zhu, Z.,... Cao, Y. (2020). Composition Engineering of All-Inorganic Perovskite Film for Efficient and Operationally Stable Solar Cells. Advanced Functional Materials, 30(28). https://doi.org/10.1002/adfm.202001764
MLA:
Tian, Jingjing, et al. "Composition Engineering of All-Inorganic Perovskite Film for Efficient and Operationally Stable Solar Cells." Advanced Functional Materials 30.28 (2020).
BibTeX: Download