Shaping Field Gradients for Nanolocalization

Nechayev S, Eismann J, Neugebauer M, Banzer P (2020)


Publication Type: Journal article

Publication year: 2020

Journal

Book Volume: 7

Pages Range: 581-587

Journal Issue: 3

DOI: 10.1021/acsphotonics.9b01720

Abstract

Deep subwavelength localization and displacement sensing of optical nanoantennas have emerged as extensively pursued objectives in nanometrology, where focused beams serve as high-precision optical rulers while the scattered light provides an optical readout. Here, we show that in these schemes using an optical excitation as a position gauge implies that the sensitivity to displacements of a nanoantenna depends on the spatial gradients of the excitation field. Specifically, we explore one of such novel localization schemes based on the appearance of transversely spinning fields in strongly confined optical beams, resulting in far-field segmentation of left- and right-hand circular polarizations of the scattered light, an effect known as the giant spin-Hall effect of light. We construct vector beams with an augmented transverse spin density gradient in the focal plane and experimentally confirm enhanced sensitivity of the far-field spin segmentation to lateral displacements of an electric-dipole nanoantenna. We conclude that sculpturing of electromagnetic field gradients and intelligent design of scatterers pave the way toward further improvements in displacement sensitivity.

Authors with CRIS profile

Involved external institutions

How to cite

APA:

Nechayev, S., Eismann, J., Neugebauer, M., & Banzer, P. (2020). Shaping Field Gradients for Nanolocalization. ACS Photonics, 7(3), 581-587. https://dx.doi.org/10.1021/acsphotonics.9b01720

MLA:

Nechayev, Sergey, et al. "Shaping Field Gradients for Nanolocalization." ACS Photonics 7.3 (2020): 581-587.

BibTeX: Download