Development of an analysis to probe the neutrino mass ordering with atmospheric neutrinos using three years of IceCube DeepCore data: IceCube Collaboration

Aartsen MG, Ackermann M, Adams J, Aguilar JA, Ahlers M, Ahrens M, Alispach C, Andeen K, Anderson T, Ansseau I, Anton G, Argüelles C, Auffenberg J, Axani S, Backes P, Bagherpour H, Bai X, Barbano A, Barwick SW, Baum V, Bay R, Beatty JJ, Becker KH, Tjus JB, BenZvi S, Berley D, Bernardini E, Besson DZ, Binder G, Bindig D, Blaufuss E, Blot S, Bohm C, Börner M, Böser S, Botner O, Bourbeau E, Bourbeau J, Bradascio F, Braun J, Bretz HP, Bron S, Brostean-Kaiser J, Burgman A, Busse RS, Carver T, Chen C, Cheung E, Chirkin D, Clark K, Classen L, Collin GH, Conrad JM, Coppin P, Correa P, Cowen DF, Cross R, Dave P, de André JP, De Clercq C, DeLaunay JJ, Dembinski H, Deoskar K, De Ridder S, Desiati P, de Vries KD, de Wasseige G, de With M, DeYoung T, Diaz A, Díaz-Vélez JC, Dujmovic H, Dunkman M, Dvorak E, Eberhardt B, Ehrhardt T, Eichmann B, Eller P, Evans JJ, Evenson PA, Fahey S, Fazely AR, Felde J, Filimonov K, Finley C, Franckowiak A, Friedman E, Fritz A, Gaisser TK, Gallagher J, Ganster E, Garrappa S, Gerhardt L, Ghorbani K, Glauch T, Glüsenkamp T, Goldschmidt A, Gonzalez JG, Grant D, Griffith Z, Günder M, Gündüz M, Haack C, Hallgren A, Halve L, Halzen F, Hanson K, Hebecker D, Heereman D, Helbing K, Hellauer R, Henningsen F, Hickford S, Hignight J, Hill GC, Hoffman KD, Hoffmann R, Hoinka T, Hokanson-Fasig B, Hoshina K, Huang F, Huber M, Hultqvist K, Hünnefeld M, Hussain R, In S, Iovine N, Ishihara A, Jacobi E, Japaridze GS, Jeong M, Jero K, Jones BJ, Kang W, Kappes A, Kappesser D, Karg T, Karl M, Karle A, Katz U, Kauer M, Kelley JL, Kheirandish A, Kim J, Kintscher T, Kiryluk J, Kittler T, Klein SR, Koirala R, Kolanoski H, Köpke L, Kopper C, Kopper S, Koskinen DJ, Kowalski M, Krings K, Krückl G, Kulacz N, Kunwar S, Kurahashi N, Kyriacou A, Labare M, Lanfranchi JL, Larson MJ, Lauber F, Lazar JP, Leonard K, Leuermann M, Liu QR, Lohfink E, Lozano Mariscal CJ, Lu L, Lucarelli F, Lünemann J, Luszczak W, Madsen J, Maggi G, Mahn KB, Makino Y, Mallot K, Mancina S, Mariş IC, Maruyama R, Mase K, Maunu R, Meagher K, Medici M, Medina A, Meier M, Meighen-Berger S, Menne T, Merino G, Meures T, Miarecki S, Micallef J, Momenté G, Montaruli T, Moore RW, Moulai M, Nagai R, Nahnhauer R, Nakarmi P, Naumann U, Neer G, Niederhausen H, Nowicki SC, Nygren DR, Pollmann AO, Olivas A, O’Murchadha A, O’Sullivan E, Palczewski T, Pandya H, Pankova DV, Park N, Peiffer P, de los Heros CP, Pieloth D, Pinat E, Pizzuto A, Plum M, Price PB, Przybylski GT, Raab C, Raissi A, Rameez M, Rauch L, Rawlins K, Rea IC, Reimann R, Relethford B, Renzi G, Resconi E, Rhode W, Richman M, Robertson S, Rongen M, Rott C, Ruhe T, Ryckbosch D, Rysewyk D, Safa I, Herrera SE, Sandrock A, Sandroos J, Santander M, Sarkar S, Sarkar S, Satalecka K, Schaufel M, Schlunder P, Schmidt T, Schneider A, Schneider J, Schumacher L, Sclafani S, Seckel D, Seunarine S, Silva M, Snihur R, Soedingrekso J, Soldin D, Söldner-Rembold S, Song M, Spiczak GM, Spiering C, Stachurska J, Stamatikos M, Stanev T, Stasik A, Stein R, Stettner J, Steuer A, Stezelberger T, Stokstad RG, Stößl A, Strotjohann NL, Stuttard T, Sullivan GW, Sutherland M, Taboada I, Tenholt F, Ter-Antonyan S, Terliuk A, Tilav S, Tomankova L, Tönnis C, Toscano S, Tosi D, Tselengidou M, Tung CF, Turcati A, Turcotte R, Turley CF, Ty B, Unger E, Unland Elorrieta MA, Usner M, Vandenbroucke J, Van Driessche W, van Eijk D, van Eijndhoven N, Vanheule S, van Santen J, Vraeghe M, Walck C, Wallace A, Wallraff M, Wandkowsky N, Watson TB, Weaver C, Weiss MJ, Weldert J, Wendt C, Werthebach J, Westerhoff S, Whelan BJ, Whitehorn N, Wiebe K, Wiebusch CH, Wille L, Williams DR, Wills L, Wolf M, Wood J, Wood TR, Woschnagg K, Wrede G, Wren S, Xu DL, Xu XW, Xu Y, Yanez JP, Yodh G, Yoshida S, Yuan T (2020)


Publication Type: Journal article

Publication year: 2020

Journal

Book Volume: 80

Article Number: 9

Journal Issue: 1

DOI: 10.1140/epjc/s10052-019-7555-0

Abstract

The Neutrino Mass Ordering (NMO) remains one of the outstanding questions in the field of neutrino physics. One strategy to measure the NMO is to observe matter effects in the oscillation pattern of atmospheric neutrinos above ∼1GeV, as proposed for several next-generation neutrino experiments. Moreover, the existing IceCube DeepCore detector can already explore this type of measurement. We present the development and application of two independent analyses to search for the signature of the NMO with three years of DeepCore data. These analyses include a full treatment of systematic uncertainties and a statistically-rigorous method to determine the significance for the NMO from a fit to the data. Both analyses show that the dataset is fully compatible with both mass orderings. For the more sensitive analysis, we observe a preference for normal ordering with a p-value of pIO= 15.3 % and CL s= 53.3 % for the inverted ordering hypothesis, while the experimental results from both analyses are consistent within their uncertainties. Since the result is independent of the value of δCP and obtained from energies Eν≳5GeV, it is complementary to recent results from long-baseline experiments. These analyses set the groundwork for the future of this measurement with more capable detectors, such as the IceCube Upgrade and the proposed PINGU detector.

Authors with CRIS profile

How to cite

APA:

Aartsen, M.G., Ackermann, M., Adams, J., Aguilar, J.A., Ahlers, M., Ahrens, M.,... Yuan, T. (2020). Development of an analysis to probe the neutrino mass ordering with atmospheric neutrinos using three years of IceCube DeepCore data: IceCube Collaboration. European Physical Journal C: Particles and Fields, 80(1). https://dx.doi.org/10.1140/epjc/s10052-019-7555-0

MLA:

Aartsen, M. G., et al. "Development of an analysis to probe the neutrino mass ordering with atmospheric neutrinos using three years of IceCube DeepCore data: IceCube Collaboration." European Physical Journal C: Particles and Fields 80.1 (2020).

BibTeX: Download