Photo-Electrochemical Solar-to-Fuel Energy Conversion by Hematite-Based Photo-Anodes-The Role of 1D Nanostructuring

Hejazi S, Altomare M, Schmuki P (2019)


Publication Type: Journal article

Publication year: 2019

Journal

DOI: 10.1515/zpch-2019-1479

Abstract

Photo-electrochemical (PEC) water splitting (WS) using metal oxide semiconductors is regarded as a promising approach for the renewable production of fuels and energy vectors such as hydrogen (H2). Among metal oxide semiconductors, iron oxide in the form of hematite (α-Fe2O3) is one of the most researched photo-anode materials, mainly due to its ability to absorb photons up to 600 nm combined to a set of desirable properties such as high photocorrosion resistance, environmental friendliness, large abundance and relatively low production costs. However, hematite main disadvantages are a low electrical conductivity and a high rate of charge recombination; both these shortcomings drastically limit functionality and efficiency of hematite-based photo-anodes in PEC devices. One-dimensional (1D) nanostructuring is a powerful tool to tackle such disadvantages as it provides the photoelectrode material with increased surface area along with directional charge transport properties and short charge diffusion distances to the electrolyte-these features can improve the lifetime of photo-generated charges and/or enhance the charge transfer efficiency, and can consequently lead to a superior photo-electrochemical performance. At the same time, chemical/physical modification can also compensate natural weaknesses of hematite in water photoelectolysis. The present mini-review outlines a series of most effective strategies for the fabrication of 1D hematite nanostructures as well as for their physicochemical modification, mainly by doping or co-catalyst decoration, to achieve superior PEC activity.

Authors with CRIS profile

How to cite

APA:

Hejazi, S., Altomare, M., & Schmuki, P. (2019). Photo-Electrochemical Solar-to-Fuel Energy Conversion by Hematite-Based Photo-Anodes-The Role of 1D Nanostructuring. Zeitschrift für Physikalische Chemie-International Journal of Research in Physical Chemistry & Chemical Physics. https://dx.doi.org/10.1515/zpch-2019-1479

MLA:

Hejazi, Seyedsina, Marco Altomare, and Patrik Schmuki. "Photo-Electrochemical Solar-to-Fuel Energy Conversion by Hematite-Based Photo-Anodes-The Role of 1D Nanostructuring." Zeitschrift für Physikalische Chemie-International Journal of Research in Physical Chemistry & Chemical Physics (2019).

BibTeX: Download