Revisiting surface core-level shifts for ionic compounds

Bagus PS, Nelin CJ, Zhao X, Levchenko S, Davis E, Weng X, Späth F, Papp C, Kuhlenbeck H, Freund HJ (2019)


Publication Type: Journal article

Publication year: 2019

Journal

Book Volume: 100

Journal Issue: 11

DOI: 10.1103/PhysRevB.100.115419

Abstract

The shifts of core-level binding energies can provide powerful information about the electronic structure of a material. Understanding the physical origin of these shifts for catalytically relevant oxides may provide important insight into their properties. This requires reliable theoretical methods which are able to relate the binding energy shifts to the electronic structure. In order to establish such a methodology, the CaO(100) surface to bulk core-level binding energy shifts have been studied with Hartree-Fock and density-functional theory methods using both cluster and periodic slab models. The shifts obtained from the different theoretical methods are compared with each other and with data from synchrotron-based x-ray photoelectron spectroscopy (XPS) measurements. With a common approximation for the slab model treatment of XPS, the predicted binding energy shifts are seriously in error. The origin of the error is identified as arising from a flawed treatment of the surface atom binding energies, and a method for correcting the failure is presented.

Authors with CRIS profile

Involved external institutions

How to cite

APA:

Bagus, P.S., Nelin, C.J., Zhao, X., Levchenko, S., Davis, E., Weng, X.,... Freund, H.-J. (2019). Revisiting surface core-level shifts for ionic compounds. Physical Review B, 100(11). https://dx.doi.org/10.1103/PhysRevB.100.115419

MLA:

Bagus, Paul S., et al. "Revisiting surface core-level shifts for ionic compounds." Physical Review B 100.11 (2019).

BibTeX: Download