Global optimization of batch and steady-state recycling chromatography based on the equilibrium model

Weiterer Publikationstyp


Details zur Publikation

Autorinnen und Autoren: Dienstbier J, Schmölder J, Burlacu R, Liers F, Kaspereit M
Jahr der Veröffentlichung: 2019
Sprache: Englisch


Abstract

An approach is presented for the optimal design of batch and steady-state recycling (SSR) chromatography. The optimization problem is decomposed into two stages. At the first stage, an efficient formulation as mixed-integer problem (MIP) is applied to obtain optimal fractionation times for chromatograms simulated by the equilibrium model. At the second stage, the optima are evaluated against a parametrized objective function. The chosen combination of model and optimization method provides a computationally very efficient tool. A comprehensive example study demonstrates that batch chromatography achieves the highest productivities at the cost of limited yields, which is optimal only for negligible feed costs. In other instances, the more flexible SSR concept provides larger profits. The results reveal also new optimal operating policies for SSR processes with segmented product fractions and waste streams.


FAU-Autorinnen und Autoren / FAU-Herausgeberinnen und Herausgeber

Burlacu, Robert
Lehrstuhl für Angewandte Mathematik (Gemischt-ganzzahlige lineare und nichtlineare Optimierung)
Dienstbier, Jana
Professur für Angewandte Mathematik (Ganzzahlige und robuste Optimierung)
Kaspereit, Malte Prof. Dr.-Ing.
Professur für Thermische Verfahrenstechnik
Liers-Bergmann, Frauke Prof. Dr.
Professur für Angewandte Mathematik (Ganzzahlige und robuste Optimierung)
Schmölder, Johannes
Lehrstuhl für Thermische Verfahrenstechnik


Zitierweisen

APA:
Dienstbier, J., Schmölder, J., Burlacu, R., Liers, F., & Kaspereit, M. (2019). Global optimization of batch and steady-state recycling chromatography based on the equilibrium model.

MLA:
Dienstbier, Jana, et al. Global optimization of batch and steady-state recycling chromatography based on the equilibrium model. 2019.

BibTeX: 

Zuletzt aktualisiert 2019-16-07 um 08:40