Branching trees I: concatenation and infinite divisibility

Beitrag in einer Fachzeitschrift


Details zur Publikation

Autorinnen und Autoren: Glode P, Greven A, Rippl T
Zeitschrift: Electronic Journal of Probability
Jahr der Veröffentlichung: 2019
Band: 24
ISSN: 1083-6489


Abstract

The goal of this work is to decompose random populations with a genealogy in subfamilies of a given degree of kinship and to obtain a notion of infinitely divisible genealogies. We model the genealogical structure of a population by (equivalence classes of) ultrametric measure spaces (um-spaces) as elements of the Polish space U which we recall. In order to then analyze the family structure in this coding we introduce an algebraic structure on um-spaces (a consistent collection of semigroups). This allows us to obtain a path of decompositions of subfamilies of fixed kinship h (described as ultrametric measure spaces), for every depth h as a measurable functional of the genealogy.


FAU-Autorinnen und Autoren / FAU-Herausgeberinnen und Herausgeber

Greven, Andreas Prof. Dr.
Lehrstuhl für Mathematische Stochastik


Einrichtungen weiterer Autorinnen und Autoren

Institut für Mathematische Stochastik (IMS)
Technion - Israel Institute of Technology


Zitierweisen

APA:
Glode, P., Greven, A., & Rippl, T. (2019). Branching trees I: concatenation and infinite divisibility. Electronic Journal of Probability, 24. https://dx.doi.org/10.1214/19-EJP276

MLA:
Glode, Patric, Andreas Greven, and Thomas Rippl. "Branching trees I: concatenation and infinite divisibility." Electronic Journal of Probability 24 (2019).

BibTeX: 

Zuletzt aktualisiert 2019-25-06 um 02:08