Statistical Mechanics of an Elastically Pinned Membrane: Static Profile and Correlations

Journal article


Publication Details

Author(s): Janeš JA, Stumpf H, Schmidt D, Seifert U, Smith AS
Journal: Biophysical Journal
Publication year: 2019
Volume: 116
Journal issue: 2
Pages range: 283-295
ISSN: 0006-3495
eISSN: 1542-0086


Abstract

The relation between thermal fluctuations and the mechanical response of a free membrane has been explored in great detail, both theoretically and experimentally. However, understanding this relationship for membranes locally pinned by proteins is significantly more challenging. Given that the coupling of the membrane to the cell cytoskeleton, to the extracellular matrix, and to other internal structures is crucial for the regulation of a number of cellular processes, understanding the role of the pinning is of great interest. In this manuscript, we consider a single protein (elastic spring of a finite rest length) pinning a membrane modeled in the Monge gauge. First, we determine the Green's function for the system and complement this approach by the calculation of the mode-coupling coefficients for the plane wave expansion and the orthonormal fluctuation modes, in turn building a set of tools for numerical and analytic studies of a pinned membrane. Furthermore, we explore static correlations of the free and the pinned membrane, as well as the membrane shape, showing that all three are mutually interdependent and have an identical long-range behavior characterized by the correlation length. Interestingly, the latter displays a nonmonotonic behavior as a function of membrane tension. Importantly, exploiting these relations allows for the experimental determination of the elastic parameters of the pinning. Last but not least, we calculate the interaction potential between two pinning sites and show that even in the absence of the membrane deformation, the pinnings will be subject to an attractive force because of changes in membrane fluctuations.


FAU Authors / FAU Editors

Janeš, Josip Augustin
Physics Underlying Life Science
Schmidt, Daniel
Physics Underlying Life Science
Smith, Ana-Suncana Prof. Dr.
Physics Underlying Life Science
Stumpf, Henning
Physics Underlying Life Science


External institutions with authors

Universität Stuttgart


How to cite

APA:
Janeš, J.A., Stumpf, H., Schmidt, D., Seifert, U., & Smith, A.-S. (2019). Statistical Mechanics of an Elastically Pinned Membrane: Static Profile and Correlations. Biophysical Journal, 116(2), 283-295. https://dx.doi.org/10.1016/j.bpj.2018.12.003

MLA:
Janeš, Josip Augustin, et al. "Statistical Mechanics of an Elastically Pinned Membrane: Static Profile and Correlations." Biophysical Journal 116.2 (2019): 283-295.

BibTeX: 

Last updated on 2019-17-06 at 09:32