Measuring holographic entanglement entropy on a quantum simulator

Beitrag in einer Fachzeitschrift

Details zur Publikation

Autorinnen und Autoren: Li K, Han M, Qu D, Huang Z, Long G, Wan Y, Lu D, Zeng B, Laflamme R
Zeitschrift: npj Quantum Information
Jahr der Veröffentlichung: 2019
Band: 5
ISSN: 2056-6387


Quantum simulation promises to have wide applications in many fields where problems are hard to model with classical computers. Various quantum devices of different platforms have been built to tackle the problems in, say, quantum chemistry, condensed matter physics, and high-energy physics. Here, we report an experiment towards the simulation of quantum gravity by simulating the holographic entanglement entropy. On a six-qubit nuclear magnetic resonance quantum simulator, we demonstrate a key result of Anti-de Sitter/conformal field theory (AdS/CFT) correspondence-the Ryu-Takayanagi formula is demonstrated by measuring the relevant entanglement entropies on the perfect tensor state. The fidelity of our experimentally prepared the six-qubit state is 85.0% via full state tomography and reaches 93.7% if the signal-decay due to decoherence is taken into account. Our experiment serves as the basic module of simulating more complex tensor network states that exploring AdS/CFT correspondence. As the initial experimental attempt to study AdS/CFT via quantum information processing, our work opens up new avenues exploring quantum gravity phenomena on quantum simulators.

FAU-Autorinnen und Autoren / FAU-Herausgeberinnen und Herausgeber

Han, Muxin Dr.
Lehrstuhl für Theoretische Physik

Einrichtungen weiterer Autorinnen und Autoren

Florida Atlantic University
Southern University of Science and Technology
Tsinghua University
University of Waterloo (UW)


Li, K., Han, M., Qu, D., Huang, Z., Long, G., Wan, Y.,... Laflamme, R. (2019). Measuring holographic entanglement entropy on a quantum simulator. npj Quantum Information, 5.

Li, Keren, et al. "Measuring holographic entanglement entropy on a quantum simulator." npj Quantum Information 5 (2019).


Zuletzt aktualisiert 2019-23-05 um 14:38