Dishevelled-3 conformation dynamics analyzed by FRET-based biosensors reveals a key role of casein kinase 1

Harnos J, Canizal MCA, Jurasek M, Kumar J, Holler C, Schambony A, Hanakova K, Bernatik O, Zdrahal Z, Gomoryova K, Gybel T, Radaszkiewicz TW, Kravec M, Trantirek L, Rynes J, Dave Z, Fernandez-Llamazares AI, Vacha R, Tripsianes K, Hoffmann C, Bryja V (2019)


Publication Type: Journal article

Publication year: 2019

Journal

Book Volume: 10

Article Number: 1804

Journal Issue: 1

DOI: 10.1038/s41467-019-09651-7

Abstract

Dishevelled (DVL) is the key component of the Wnt signaling pathway. Currently, DVL conformational dynamics under native conditions is unknown. To overcome this limitation, we develop the Fluorescein Arsenical Hairpin Binder- (FlAsH-) based FRET in vivo approach to study DVL conformation in living cells. Using this single-cell FRET approach, we demonstrate that (i) Wnt ligands induce open DVL conformation, (ii) DVL variants that are predominantly open, show more even subcellular localization and more efficient membrane recruitment by Frizzled (FZD) and (iii) Casein kinase 1 ɛ (CK1ɛ) has a key regulatory function in DVL conformational dynamics. In silico modeling and in vitro biophysical methods explain how CK1ɛ-specific phosphorylation events control DVL conformations via modulation of the PDZ domain and its interaction with DVL C-terminus. In summary, our study describes an experimental tool for DVL conformational sampling in living cells and elucidates the essential regulatory role of CK1ɛ in DVL conformational dynamics.

Authors with CRIS profile

Involved external institutions

How to cite

APA:

Harnos, J., Canizal, M.C.A., Jurasek, M., Kumar, J., Holler, C., Schambony, A.,... Bryja, V. (2019). Dishevelled-3 conformation dynamics analyzed by FRET-based biosensors reveals a key role of casein kinase 1. Nature Communications, 10(1). https://dx.doi.org/10.1038/s41467-019-09651-7

MLA:

Harnos, Jakub, et al. "Dishevelled-3 conformation dynamics analyzed by FRET-based biosensors reveals a key role of casein kinase 1." Nature Communications 10.1 (2019).

BibTeX: Download