NONLOCAL SCALAR CONSERVATION LAWS ON BOUNDED DOMAINS AND APPLICATIONS IN TRAFFIC FLOW

Beitrag in einer Fachzeitschrift


Details zur Publikation

Autorinnen und Autoren: Pflug L, Spinola M, Keimer A
Zeitschrift: SIAM Journal on Mathematical Analysis
Verlag: SIAM PUBLICATIONS
Jahr der Veröffentlichung: 2018
Band: 50
Heftnummer: 6
Seitenbereich: 6271-6306
ISSN: 0036-1410


Abstract

We consider a nonlocal conservation law on a bounded spatial domain and show existence and uniqueness of weak solutions for nonnegative flux function and left-hand-side boundary datum. The nonlocal term is located in the flux function of the conservation law, averaging the solution by means of an integral at every spatial coordinate and every time, forward in space. This necessitates the prescription of a kind of right-hand-side boundary datum, the external impact on the outflow. The uniqueness of the weak solution follows without prescribing an entropy condition. Allowing the velocity to become zero (also dependent on the nonlocal impact) offers more realistic modeling and significantly higher applicability. The model can thus be applied to traffic flow, as suggested for unbounded domains in [S. Blandin and P. Goatin, Numer. Math., 132 (2016), pp. 217-241], [P. Goatin and S. Scialanga, Netw. Hetereog. Media, 11 (2016), pp. 107-121]. It possesses finite acceleration and can be interpreted as a nonlocal approximation of the famous "local" Lighthill-Whitham-Richards model [M. Lighthill and G. Whitham, Proc. Roy. Soc. London Ser. A, 229 (1955), pp. 281-316], [P. I. Richards, Oper. Res., 4 (1956), pp. 42-51]. Several numerical examples are presented and discussed also with respect to the reasonableness of the required assumptions and the model itself.


FAU-Autorinnen und Autoren / FAU-Herausgeberinnen und Herausgeber

Keimer, Alexander Dr.
Lehrstuhl für Angewandte Mathematik
Pflug, Lukas Dr.
Sonderforschungsbereich 814/3 Additive Fertigung
Spinola, Michele
Lehrstuhl für Angewandte Mathematik


Zitierweisen

APA:
Pflug, L., Spinola, M., & Keimer, A. (2018). NONLOCAL SCALAR CONSERVATION LAWS ON BOUNDED DOMAINS AND APPLICATIONS IN TRAFFIC FLOW. SIAM Journal on Mathematical Analysis, 50(6), 6271-6306. https://dx.doi.org/10.1137/18M119817X

MLA:
Pflug, Lukas, Michele Spinola, and Alexander Keimer. "NONLOCAL SCALAR CONSERVATION LAWS ON BOUNDED DOMAINS AND APPLICATIONS IN TRAFFIC FLOW." SIAM Journal on Mathematical Analysis 50.6 (2018): 6271-6306.

BibTeX: 

Zuletzt aktualisiert 2019-24-04 um 17:10