Synthesis and Photophysical Properties of a Sc3N@ C80‐Corrole Electron Donor–Acceptor Conjugate

Liu B, Fang H, Li X, Cai W, Bao L, Rudolf M, Plass F, Fan L, Lu X, Guldi DM (2015)


Publication Type: Journal article, Original article

Subtype: other

Publication year: 2015

Journal

Publisher: WILEY‐VCH Verlag Weinheim

Book Volume: 21

Pages Range: 746-752-752

Journal Issue: 2

DOI: 10.1002/chem.201405572

Abstract

Embedding endohdedral metallofullerenes (EMFs) into electron donor–acceptor systems is still a challenging task owing to their limited quantities and their still largely unexplored chemical properties. In this study, we have performed a 1,3-dipolar cycloaddition reaction of a corrole-based precursor with Sc3N@C80 to regioselectively form a [5,6]-adduct (1). The successful attachment of the corrole moiety was confirmed by mass spectrometry. In the electronic ground state, absorption spectra suggest sizeable electronic communications between the electron acceptor and the electron donor. Moreover, the addition pattern occurring at a [5,6]-bond junction is firmly proven by NMR spectroscopy and electrochemical investigations performed with 1. In the electronically excited state, which is probed in photophysical assays with 1, a fast electron-transfer yields the radical ion pair state consisting of the one-electron-reduced Sc3N@C80 and of the one-electron-oxidized corrole upon its exclusive photoexcitation. As such, our results shed new light on the practical work utilizing EMFs as building blocks in photovoltaics.

Authors with CRIS profile

Involved external institutions

How to cite

APA:

Liu, B., Fang, H., Li, X., Cai, W., Bao, L., Rudolf, M.,... Guldi, D.M. (2015). Synthesis and Photophysical Properties of a Sc3N@ C80‐Corrole Electron Donor–Acceptor Conjugate. Chemistry - A European Journal, 21(2), 746-752-752. https://dx.doi.org/10.1002/chem.201405572

MLA:

Liu, Bin, et al. "Synthesis and Photophysical Properties of a Sc3N@ C80‐Corrole Electron Donor–Acceptor Conjugate." Chemistry - A European Journal 21.2 (2015): 746-752-752.

BibTeX: Download