LAGRANGE THEORY OF DISCRETE-CONTINUOUS NONLINEAR OPTIMIZATION

Beitrag in einer Fachzeitschrift


Details zur Publikation

Autorinnen und Autoren: Jahn J, Knossalla M
Zeitschrift: Journal of Nonlinear and Variational Analysis
Jahr der Veröffentlichung: 2018
Band: 2
Heftnummer: 3
Seitenbereich: 317-342
ISSN: 2560-6921
eISSN: 2560-6778


Abstract

This paper presents a new Lagrange theory of discrete-continuous conic optimization in an infinite dimensional setting. The following questions are answered for discrete-continuous optimization problems: how to define a Lagrange functional, how Karush-Kuhn-Tucker conditions look like, and which duality results can be obtained? This approach is based on new separation theorems for discrete sets, which are also given in this paper. The developed theory is finally applied to problems of discrete-continuous semidefinite and copositive optimization.


FAU-Autorinnen und Autoren / FAU-Herausgeberinnen und Herausgeber

Jahn, Johannes Prof. Dr.
Naturwissenschaftliche Fakultät
Knossalla, Martin
Lehrstuhl für Angewandte Mathematik


Zitierweisen

APA:
Jahn, J., & Knossalla, M. (2018). LAGRANGE THEORY OF DISCRETE-CONTINUOUS NONLINEAR OPTIMIZATION. Journal of Nonlinear and Variational Analysis, 2(3), 317-342. https://dx.doi.org/10.23952/jnva.2.2018.3.07

MLA:
Jahn, Johannes, and Martin Knossalla. "LAGRANGE THEORY OF DISCRETE-CONTINUOUS NONLINEAR OPTIMIZATION." Journal of Nonlinear and Variational Analysis 2.3 (2018): 317-342.

BibTeX: 

Zuletzt aktualisiert 2019-02-04 um 16:08