Surface Couplings for Subdomain-Wise Isoviscous Gradient Based Stokes Finite Element Discretizations

Beitrag in einer Fachzeitschrift


Details zur Publikation

Autorinnen und Autoren: Huber M, Rüde U, Waluga C, Wohlmuth BI
Zeitschrift: Journal of Scientific Computing
Verlag: Springer US
Jahr der Veröffentlichung: 2018
Band: 74
Heftnummer: 2
Seitenbereich: 895--919
ISSN: 0885-7474


Abstract

The Stokes system with constant viscosity can be cast into different formulations by exploiting the incompressibility constraint. For instance, the rate of strain tensor in the weak formulation can be replaced by the velocity-gradient yielding a decoupling of the velocity components in the different coordinate directions. Consequently, the discretization of this partly decoupled formulation leads to fewer nonzero entries in the stiffness matrix. This is of particular interest in large scale simulations where a reduced memory bandwidth requirement can help to significantly accelerate the computations. In the case of a piecewise constant viscosity, as it typically arises in multi-phase flows, or when the boundary conditions involve traction, the situation is more complex, and one has to treat the cross derivatives in the original Stokes system with care. A naive application of the standard vectorial Laplacian results in a …



FAU-Autorinnen und Autoren / FAU-Herausgeberinnen und Herausgeber

Huber, Markus
Lehrstuhl für Informatik 10 (Systemsimulation)
Rüde, Ulrich Prof. Dr.
Lehrstuhl für Informatik 10 (Systemsimulation)


Einrichtungen weiterer Autorinnen und Autoren

Technische Universität München (TUM)


Zitierweisen

APA:
Huber, M., Rüde, U., Waluga, C., & Wohlmuth, B.I. (2018). Surface Couplings for Subdomain-Wise Isoviscous Gradient Based Stokes Finite Element Discretizations. Journal of Scientific Computing, 74(2), 895--919. https://dx.doi.org/10.1007/s10915-017-0470-3

MLA:
Huber, Markus, et al. "Surface Couplings for Subdomain-Wise Isoviscous Gradient Based Stokes Finite Element Discretizations." Journal of Scientific Computing 74.2 (2018): 895--919.

BibTeX: 

Zuletzt aktualisiert 2019-02-04 um 11:10