Classification of reductive real spherical pairs II. The semisimple case

Beitrag in einer Fachzeitschrift
(Originalarbeit)


Details zur Publikation

Autorinnen und Autoren: Knop F, Krötz B, Pecher T, Schlichtkrull H
Zeitschrift: Transformation Groups
Jahr der Veröffentlichung: 2019
ISSN: 1083-4362
Sprache: Englisch


Abstract

If �� is a real reductive Lie algebra and ��⊂�� is a subalgebra, then the pair (��,��) is called real spherical provided that ��=��+�� for some choice of a minimal parabolic subalgebra ��⊂��. This paper concludes the classification of real spherical pairs (��,��), where ��
is a reductive real algebraic subalgebra. More precisely, we classify
all such pairs which are strictly indecomposable, and we discuss (in
Section 6) how to construct from these all real spherical pairs. A
preceding paper treated the case where �� is simple. The present work builds on that case and on the classification by Brion and Mikityuk for the complex spherical case.


FAU-Autorinnen und Autoren / FAU-Herausgeberinnen und Herausgeber

Knop, Friedrich Prof. Dr.
Lehrstuhl für Mathematik (Algebra und Geometrie)


Einrichtungen weiterer Autorinnen und Autoren

Universität Paderborn
University of Copenhagen


Zitierweisen

APA:
Knop, F., Krötz, B., Pecher, T., & Schlichtkrull, H. (2019). Classification of reductive real spherical pairs II. The semisimple case. Transformation Groups. https://dx.doi.org/10.1007/s00031-019-09515-w

MLA:
Knop, Friedrich, et al. "Classification of reductive real spherical pairs II. The semisimple case." Transformation Groups (2019).

BibTeX: 

Zuletzt aktualisiert 2019-20-03 um 13:38