Optimizing the number of multigrid cycles in the full multigrid algorithm

Beitrag in einer Fachzeitschrift


Details zur Publikation

Autorinnen und Autoren: Thekale A, Gradl T, Klamroth K, Rüde U
Zeitschrift: Numerical Linear Algebra With Applications
Jahr der Veröffentlichung: 2010
Band: 17
Heftnummer: 2-3
Seitenbereich: 199-210
ISSN: 1070-5325


Abstract

Multigrid (MG) methods are among the most efficient and widespread methods for solving large linear systems of equations that arise, for example, from the discretization of partial differential equations. In this paper we introduce a new approach for optimizing the computational cost of the full MG method to achieve a given accuracy by determining the number of MG cycles on each level. To achieve this, a very efficient and flexible Branch and Bound algorithm is developed. The implementation in the parallel finite element solver Hierarchical Hybrid Grids leads to a significant reduction in CPU time.


FAU-Autorinnen und Autoren / FAU-Herausgeberinnen und Herausgeber

Gradl, Tobias
Lehrstuhl für Informatik 10 (Systemsimulation)
Rüde, Ulrich Prof. Dr.
Lehrstuhl für Informatik 10 (Systemsimulation)


Zusätzliche Organisationseinheit(en)
Exzellenz-Cluster Engineering of Advanced Materials


Einrichtungen weiterer Autorinnen und Autoren

Bergische Universität Wuppertal


Forschungsbereiche

A3 Multiscale Modeling and Simulation
Exzellenz-Cluster Engineering of Advanced Materials


Zitierweisen

APA:
Thekale, A., Gradl, T., Klamroth, K., & Rüde, U. (2010). Optimizing the number of multigrid cycles in the full multigrid algorithm. Numerical Linear Algebra With Applications, 17(2-3), 199-210. https://dx.doi.org/10.1002/nla.697

MLA:
Thekale, A., et al. "Optimizing the number of multigrid cycles in the full multigrid algorithm." Numerical Linear Algebra With Applications 17.2-3 (2010): 199-210.

BibTeX: 

Zuletzt aktualisiert 2019-22-07 um 07:37