Scale-dependent diffusion anisotropy in nanoporous silicon.

Beitrag in einer Fachzeitschrift

Details zur Publikation

Autorinnen und Autoren: Kondrashova D, Lauerer A, Mehlhorn D, Jobic H, Feldhoff A, Thommes M, Chakraborty D, Gommes C, Zecevic J, De Jongh P, Bunde A, Kaerger J, Valiullin R
Zeitschrift: Scientific Reports
Verlag: Nature Publishing Group
Jahr der Veröffentlichung: 2017
Band: 7
Seitenbereich: 40207
ISSN: 2045-2322


Nanoporous silicon produced by electrochem. etching of highly B-doped p-type silicon wafers can be prepd. with tubular pores imbedded in a silicon matrix. Such materials have found many technol. applications and provide a useful model system for studying phase transitions under confinement. This paper reports a joint exptl. and simulation study of diffusion in such materials, covering displacements from mol. dimensions up to tens of micrometers with carefully selected probe mols. In addn. to mass transfer through the channels, diffusion (at much smaller rates) is also found to occur in directions perpendicular to the channels, thus providing clear evidence of connectivity. With increasing displacements, propagation in both axial and transversal directions is progressively retarded, suggesting a scale-dependent, hierarchical distribution of transport resistances ("constrictions" in the channels) and of shortcuts (connecting "bridges") between adjacent channels. The exptl. evidence from these studies is confirmed by mol. dynamics (MD) simulation in the range of atomistic displacements and rationalized with a simple model of statistically distributed "constrictions" and "bridges" for displacements in the micrometer range via dynamic Monte Carlo (DMC) simulation. Both ranges are demonstrated to be mutually transferrable by DMC simulations based on the pore space topol. detd. by electron tomog. [on SciFinder(R)]

Zusätzliche Organisationseinheit(en)
Lehrstuhl für Thermische Verfahrenstechnik

Einrichtungen weiterer Autorinnen und Autoren

Gottfried Wilhelm Leibniz Universität Hannover
IISER Indian Institute of Science Education and Research Mohali
Justus-Liebig-Universität Gießen
National Center for Scientific Research / Centre national de la recherche scientifique (CNRS)
Quantachrome Instruments
Universität Leipzig
Universiteit Utrecht (UU) / Utrecht University


Kondrashova, D., Lauerer, A., Mehlhorn, D., Jobic, H., Feldhoff, A., Thommes, M.,... Valiullin, R. (2017). Scale-dependent diffusion anisotropy in nanoporous silicon. Scientific Reports, 7, 40207.

Kondrashova, Daria, et al. "Scale-dependent diffusion anisotropy in nanoporous silicon." Scientific Reports 7 (2017): 40207.


Zuletzt aktualisiert 2019-28-02 um 06:14