Bögelein V, Duzaar F, Marcellini P, Signoriello S (2017)
Publication Type: Journal article
Publication year: 2017
Book Volume: 34
Pages Range: 355--379
Journal Issue: 2
DOI: 10.1016/j.anihpc.2015.12.005
In this paper we establish the existence of Lipschitz-continuous solutions to the Cauchy Dirichlet problem of evolutionary partial differential equations ∂tu − div Df (Du) = 0 in T, u = uo on ∂PT. The only assumptions needed are the convexity of the generating function f : Rn → R, and the classical bounded slope condition on the initial and the lateral boundary datum uo ∈ W1,∞(). We emphasize that no growth conditions are assumed on f and that – an example which does not enter in the elliptic case – uo could be any Lipschitz initial and boundary datum, vanishing at the boundary ∂, and the boundary may contain flat parts, for instance could be a rectangle in Rn.
APA:
Bögelein, V., Duzaar, F., Marcellini, P., & Signoriello, S. (2017). Parabolic equations and the bounded slope condition. Annales de l'Institut Henri Poincaré - Analyse Non Linéaire, 34(2), 355--379. https://doi.org/10.1016/j.anihpc.2015.12.005
MLA:
Bögelein, Verena, et al. "Parabolic equations and the bounded slope condition." Annales de l'Institut Henri Poincaré - Analyse Non Linéaire 34.2 (2017): 355--379.
BibTeX: Download