Bregman distances in inverse problems and partial differential equations

Beitrag in einem Sammelwerk


Details zur Publikation

Autorinnen und Autoren: Burger M
Herausgeber: J.Hiriard-Urrurty, A.Korytowski, H.Maurer, M.Szymkat
Titel Sammelwerk: Advances in Mathematical
Modeling, Optimization, and Optimal Control

Verlag: Springer International Publishing
Jahr der Veröffentlichung: 2016
Titel der Reihe: Springer Optimization and Its Applications
Seitenbereich: 3-33
ISSN: 1931-6828


Abstract

The aim of this paper is to provide an overview of recent development related to Bregman distances outside its native areas of optimization and statistics. We discuss approaches in inverse problems and image processing based on Bregman distances, which have evolved to a standard tool in these fields in the last decade. Moreover, we discuss related issues in the analysis and numerical analysis of nonlinear partial differential equations with a variational structure. For such problems Bregman distances appear to be of similar importance, but are currently used only in a quite hidden fashion. We try to work out explicitly the aspects related to Bregman distances, which also lead to novel mathematical questions and may also stimulate further research in these areas.


Einrichtungen weiterer Autorinnen und Autoren

Westfälische Wilhelms-Universität (WWU) Münster


Zitierweisen

APA:
Burger, M. (2016). Bregman distances in inverse problems and partial differential equations. In J.Hiriard-Urrurty, A.Korytowski, H.Maurer, M.Szymkat (Eds.), Advances in Mathematical Modeling, Optimization, and Optimal Control. (pp. 3-33). Springer International Publishing.

MLA:
Burger, Martin. "Bregman distances in inverse problems and partial differential equations." Advances in Mathematical Modeling, Optimization, and Optimal Control. Ed. J.Hiriard-Urrurty, A.Korytowski, H.Maurer, M.Szymkat, Springer International Publishing, 2016. 3-33.

BibTeX: 

Zuletzt aktualisiert 2018-30-11 um 14:38