Individual based and mean-field modeling of direct aggregation

Burger M, Haskovec J, Wolfram MT (2013)


Publication Language: English

Publication Type: Journal article

Publication year: 2013

Journal

Book Volume: 260

Pages Range: 145-158

Issue: null

DOI: 10.1016/j.physd.2012.11.003

Abstract

We introduce two models of biological aggregation, based on randomly moving particles with individual stochasticity depending on the perceived average population density in their neighborhood. In the firstorder model the location of each individual is subject to a density-dependent random walk, while in the second-order model the density-dependent random walk acts on the velocity variable, together with a density-dependent damping term. The main novelty of our models is that we do not assume any explicit aggregative force acting on the individuals; instead, aggregation is obtained exclusively by reducing the individual stochasticity in response to higher perceived density. We formally derive the corresponding mean-field limits, leading to nonlocal degenerate diffusions. Then, we carry out the mathematical analysis of the first-order model, in particular, we prove the existence of weak solutions and show that it allows for measure-valued steady states. We also perform linear stability analysis and identify conditions for pattern formation. Moreover, we discuss the role of the nonlocality for well-posedness of the first-order model. Finally, we present results of numerical simulations for both the first- and second-order model on the individual-based and continuum levels of description. © 2012 Elsevier B.V. All rights reserved.

Authors with CRIS profile

Involved external institutions

How to cite

APA:

Burger, M., Haskovec, J., & Wolfram, M.-T. (2013). Individual based and mean-field modeling of direct aggregation. Physica D-Nonlinear Phenomena, 260, 145-158. https://dx.doi.org/10.1016/j.physd.2012.11.003

MLA:

Burger, Martin, Jan Haskovec, and Marie-Therese Wolfram. "Individual based and mean-field modeling of direct aggregation." Physica D-Nonlinear Phenomena 260 (2013): 145-158.

BibTeX: Download