Higher-order TV methods - Enhancement via Bregman iteration

Beitrag in einer Fachzeitschrift


Details zur Publikation

Autorinnen und Autoren: Benning M, Brune C, Burger M, Mueller J
Zeitschrift: Journal of Scientific Computing
Jahr der Veröffentlichung: 2013
Band: 54
Seitenbereich: 269-310
ISSN: 0885-7474
Sprache: Englisch


Abstract

In this work we analyze and compare two recent variational models for image denoising and improve their reconstructions by applying a Bregman iteration strategy. One of the standard techniques in image denoising, the ROF-model (cf. Rudin et al. in Physica D 60:259-268, 1992), is well known for recovering sharp edges of a signal or image, but also for producing staircase-like artifacts. In order to overcome these model-dependent deficiencies, total variation modifications that incorporate higher-order derivatives have been proposed (cf. Chambolle and Lions in Numer. Math. 76:167-188, 1997; Bredies et al. in SIAM J. Imaging Sci. 3(3):492-526, 2010). These models reduce staircasing for reasonable parameter choices. However, the combination of derivatives of different order leads to other undesired side effects, which we shall also highlight in several examples. The goal of this paper is to analyze capabilities and limitations of the different models and to improve their reconstructions in quality by introducing Bregman iterations. Besides general modeling and analysis we discuss efficient numerical realizations of Bregman iterations and modified versions thereof. © Springer Science+Business Media New York 2012.


Einrichtungen weiterer Autorinnen und Autoren

University of California Los Angeles (UCLA)
Westfälische Wilhelms-Universität (WWU) Münster


Zitierweisen

APA:
Benning, M., Brune, C., Burger, M., & Mueller, J. (2013). Higher-order TV methods - Enhancement via Bregman iteration. Journal of Scientific Computing, 54, 269-310. https://dx.doi.org/10.1007/s10915-012-9650-3

MLA:
Benning, Martin, et al. "Higher-order TV methods - Enhancement via Bregman iteration." Journal of Scientific Computing 54 (2013): 269-310.

BibTeX: 

Zuletzt aktualisiert 2018-29-11 um 14:53