Biological Optical-to-Chemical Signal Conversion Interface: A Small-scale Modulator for Molecular Communications

Beitrag in einer Fachzeitschrift
(Originalarbeit)


Details zur Publikation

Autor(en): Grebenstein L, Kirchner J, Stavracakis Peixoto R, Zimmermann W, Irnstorfer F, Wicke W, Ahmadzadeh A, Jamali Kooshkghazi V, Fischer G, Weigel R, Burkovski A, Schober R
Zeitschrift: IEEE Transactions on Nanobioscience
Jahr der Veröffentlichung: 2018
ISSN: 1536-1241


Abstract

Although many exciting applications of molecular communication (MC) systems are envisioned to be at microscale, the MC testbeds reported in the literature so far are mostly at macroscale. This may partially be due to the fact that controlling an MC system at microscale is challenging. To link the macroworld to the microworld, we propose and demonstrate a biological signal conversion interface that can also be seen
as a microscale modulator. In particular, the proposed interface transduces an optical signal, which is controlled using a lightemitting diode (LED), into a chemical signal by changing the pH of the environment. The modulator is realized using Escherichia coli bacteria as microscale entity expressing the light-driven
proton pump gloeorhodopsin from Gloeobacter violaceus. Upon inducing external light stimuli, these bacteria locally change their surrounding pH level by exporting protons into the environment. To verify the effectiveness of the proposed optical-to-chemical signal converter, we analyze the pH signal measured by a
pH sensor, which serves as receiver. We develop an analytical parametric model for the induced chemical signal as a function of the applied optical signal. Using this model, we derive a trainingbased channel estimator which estimates the parameters of the proposed model to fit the measurement data based on a least square error approach. We further derive the optimal maximum likelihood detector and a suboptimal low-complexity detector to recover the transmitted data from the measured received signal. It is shown that the proposed parametric model is in good agreement with the measurement data. Moreover, for an example scenario, we show that the proposed setup is able to successfully convert an optical signal representing a sequence of binary symbols into a chemical signal with a bit rate of 1 bit/min and recover the transmitted data from the chemical signal using the proposed estimation and detection schemes. The proposed modulator may form the basis for future MC testbeds and applications at microscale.


FAU-Autoren / FAU-Herausgeber

Ahmadzadeh, Arman
Wicke, Wayan
Lehrstuhl für Digitale Übertragung
Lehrstuhl für Digitale Übertragung
Burkovski, Andreas Prof. Dr.
Professur für Mikrobiologie
Fischer, Georg Prof. Dr.-Ing.
Professur für Technische Elektronik
Grebenstein, Laura
Professur für Mikrobiologie
Irnstorfer, Florian
Professur für Technische Elektronik
Jamali Kooshkghazi, Vahid
Lehrstuhl für Digitale Übertragung
Kirchner, Jens Dr.
Lehrstuhl für Technische Elektronik
Schober, Robert Prof. Dr.-Ing.
Lehrstuhl für Digitale Übertragung
Stavracakis Peixoto, Renata
Professur für Mikrobiologie
Weigel, Robert Prof. Dr.-Ing.
Lehrstuhl für Technische Elektronik


Zitierweisen

APA:
Grebenstein, L., Kirchner, J., Stavracakis Peixoto, R., Zimmermann, W., Irnstorfer, F., Wicke, W.,... Schober, R. (2018). Biological Optical-to-Chemical Signal Conversion Interface: A Small-scale Modulator for Molecular Communications. IEEE Transactions on Nanobioscience. https://dx.doi.org/10.1109/TNB.2018.2870910

MLA:
Grebenstein, Laura, et al. "Biological Optical-to-Chemical Signal Conversion Interface: A Small-scale Modulator for Molecular Communications." IEEE Transactions on Nanobioscience (2018).

BibTeX: 

Zuletzt aktualisiert 2018-15-10 um 19:38