Morphology-Controlled Organic Solar Cells Improved by a Nanohybrid System of Single Wall Carbon Nanotubes
Sensitized by PbS Core/Perovskite Epitaxial Ligand Shell Quantum Dots

Beitrag in einer Fachzeitschrift
(Originalarbeit)


Details zur Publikation

Autorinnen und Autoren: Soltani R, Katbab AA, Sytnyk M, Amin AY, Killilea NA, Berlinghof M, Ahmadloo F, Osvet A, Unruh T, Heiß W, Ameri T
Zeitschrift: Solar RRL
Jahr der Veröffentlichung: 2017
Band: 1
Seitenbereich: 1700043
ISSN: 2367-198X


Abstract

In the present work, a new solution processed nanohybrid system comprising of single-wall carbon nanotubes (SWCNTs) loaded by PbS quantum dots (QD) capped with an epitaxial ligand shell of methylammonium lead iodide perovskite clusters (MA4PbI6) is designed and fabricated. Attachment of PbS/PbI6 QDs on the surface of SWCNT is followed and evidenced by performing Fourier Transform Infrared Spectroscopy, X-ray photoelectron spectroscopy, and Field Emission Scanning Electron Microscopy. The steady state and dynamic photoluminescence results reveal efficient charge transfer from photo-excited PbS/PbI6 to SWCNTs. Very low amount (0.3 wt.%) of the as-synthesized PbS/PbI6-SWCNT is further incorporated into a polymeric solar cell containing P3HT and PC61BM and exhibits a power conversion efficiency improvement of around 15% compared to the P3HT:PC61BM bulk heterojunction reference solar cell. Significantly, loading perovskite capped PbS QDs on the surface of SWCNT works more efficient rather than incorporating PbS/PbI6 or SWCNT separately onto the composition of the photoactive layer. While PbS/PbI6 broaden the absorption window of photoactive layer and enhance the photon harvesting, their loading on the SWCNT has a significant influence on the faster exciton splitting by efficient electron transfer as well as keeping the desired crystallinity and nanoscale morphology of host matrix upon addition of QDs.


FAU-Autorinnen und Autoren / FAU-Herausgeberinnen und Herausgeber

Ahmadloo, Farzaneh
Lehrstuhl für Werkstoffwissenschaften (Korrosion und Oberflächentechnik)
Ameri, Tayebeh Dr.
Lehrstuhl für Werkstoffwissenschaften (Materialien der Elektronik und der Energietechnologie)
Yousefi Amin, Atefeh
Lehrstuhl für Werkstoffwissenschaften (Polymerwerkstoffe)
Berlinghof, Marvin
Lehrstuhl für Kristallographie und Strukturphysik
Heiß, Wolfgang Prof. Dr.
Department Werkstoffwissenschaften
Killilea, Niall Andrew
Professur für Werkstoffwissenschaften (lösungsprozessierte Halbleitermaterialien)
Osvet, Andres Dr.
Lehrstuhl für Werkstoffwissenschaften (Materialien der Elektronik und der Energietechnologie)
Sytnyk, Mykhailo
Lehrstuhl für Werkstoffwissenschaften (Materialien der Elektronik und der Energietechnologie)
Unruh, Tobias Prof. Dr.
Professur für Nanomaterialcharakterisierung (Streumethoden)


Zusätzliche Organisationseinheit(en)
Exzellenz-Cluster Engineering of Advanced Materials


Einrichtungen weiterer Autorinnen und Autoren

Amirkabir University of Technology (AUT) / دانشگاه صنعتی امیرکبیر


Forschungsbereiche

B Nanoelectronic Materials
Exzellenz-Cluster Engineering of Advanced Materials
A2 Nanoanalysis and Microscopy
Exzellenz-Cluster Engineering of Advanced Materials


Zitierweisen

APA:
Soltani, R., Katbab, A.A., Sytnyk, M., Amin, A.Y., Killilea, N.A., Berlinghof, M.,... Ameri, T. (2017). Morphology-Controlled Organic Solar Cells Improved by a Nanohybrid System of Single Wall Carbon Nanotubes Sensitized by PbS Core/Perovskite Epitaxial Ligand Shell Quantum Dots. Solar RRL, 1, 1700043. https://dx.doi.org/10.1002/solr.201700043

MLA:
Soltani, Rezvan, et al. "Morphology-Controlled Organic Solar Cells Improved by a Nanohybrid System of Single Wall Carbon Nanotubes Sensitized by PbS Core/Perovskite Epitaxial Ligand Shell Quantum Dots." Solar RRL 1 (2017): 1700043.

BibTeX: 

Zuletzt aktualisiert 2019-23-07 um 07:51