Topological edge states for disordered bosonic systems

Beitrag in einer Fachzeitschrift


Details zur Publikation

Autorinnen und Autoren: Peano Cavasola V, Schulz-Baldes H
Zeitschrift: Journal of Mathematical Physics
Verlag: AMER INST PHYSICS
Jahr der Veröffentlichung: 2018
Band: 59
Heftnummer: 3
ISSN: 0022-2488
Sprache: Englisch


Abstract

Quadratic bosonic Hamiltonians over a one-particle Hilbert space can be described by a Bogoliubov-de Gennes (BdG) Hamiltonian on a particle-hole Hilbert space. In general, the BdG Hamiltonian is not self-adjoint, but only J-self-adjoint on the particle-hole space viewed as a Krein space. Nevertheless, its energy bands can have non-trivial topological invariants like Chern numbers or winding numbers. By a thorough analysis for tight-binding models, it is proved that these invariants lead to bosonic edge modes which are robust to a large class of possibly disordered perturbations. Furthermore, general scenarios are presented for these edge states to be dynamically unstable even though the bulk modes are stable. Published by AIP Publishing.


FAU-Autorinnen und Autoren / FAU-Herausgeberinnen und Herausgeber

Peano Cavasola, Vittorio Dr.
Lehrstuhl für Theoretische Physik
Schulz-Baldes, Hermann Prof. Dr.
Professur für Mathematik (Mathematische Physik)


Zitierweisen

APA:
Peano Cavasola, V., & Schulz-Baldes, H. (2018). Topological edge states for disordered bosonic systems. Journal of Mathematical Physics, 59(3). https://dx.doi.org/10.1063/1.5002094

MLA:
Peano Cavasola, Vittorio, and Hermann Schulz-Baldes. "Topological edge states for disordered bosonic systems." Journal of Mathematical Physics 59.3 (2018).

BibTeX: 

Zuletzt aktualisiert 2019-22-07 um 07:36