FESTUNG: A MATLAB/GNU Octave toolbox for the discontinuous Galerkin method. Part III: Hybridized discontinuous Galerkin (HDG) formulation

Beitrag in einer Fachzeitschrift
(Originalarbeit)


Details zur Publikation

Autorinnen und Autoren: Jaust A, Reuter B, Aizinger V, Schütz J, Knabner P
Zeitschrift: Computers & Mathematics With Applications
Verlag: Elsevier Ltd
Jahr der Veröffentlichung: 2018
Band: 75
Heftnummer: 12
Seitenbereich: 4505-4533
ISSN: 0898-1221
Sprache: Englisch


Abstract

The third paper in our series on open source
MATLAB/GNU Octave implementation of the discontinuous Galerkin (DG)
method(s) focuses on a hybridized formulation. The main aim of this
ongoing work is to develop rapid prototyping techniques covering a range
of standard DG methodologies and suitable for small to medium sized
applications. Our FESTUNG package relies on fully vectorized
matrix/vector operations throughout, and all details of the
implementation are fully documented. Once again, great care is taken to
maintain a direct mapping between discretization terms and code routines
as well as to ensure full compatibility to GNU Octave. The current work
formulates a hybridized DG scheme for a linear advection problem,
describes hybrid approximation spaces on the mesh skeleton, and compares
the performance of this discretization to the standard (element-based)
DG method for different polynomial orders.


FAU-Autorinnen und Autoren / FAU-Herausgeberinnen und Herausgeber

Aizinger, Vadym, Ph.D.
Lehrstuhl für Angewandte Mathematik (Modellierung und Numerik)
Knabner, Peter Prof. Dr.
Lehrstuhl für Angewandte Mathematik (Modellierung und Numerik)
Reuter, Balthasar
Lehrstuhl für Angewandte Mathematik (Modellierung und Numerik)


Einrichtungen weiterer Autorinnen und Autoren

Hasselt University / Universiteit Hasselt


Zitierweisen

APA:
Jaust, A., Reuter, B., Aizinger, V., Schütz, J., & Knabner, P. (2018). FESTUNG: A MATLAB/GNU Octave toolbox for the discontinuous Galerkin method. Part III: Hybridized discontinuous Galerkin (HDG) formulation. Computers & Mathematics With Applications, 75(12), 4505-4533. https://dx.doi.org/10.1016/j.camwa.2018.03.045

MLA:
Jaust, Alexander, et al. "FESTUNG: A MATLAB/GNU Octave toolbox for the discontinuous Galerkin method. Part III: Hybridized discontinuous Galerkin (HDG) formulation." Computers & Mathematics With Applications 75.12 (2018): 4505-4533.

BibTeX: 

Zuletzt aktualisiert 2019-11-07 um 09:43