Improvements in LTE-Advanced Time Series Prediction with Dimensionality Reduction Algorithms

Beitrag bei einer Tagung
(Konferenzbeitrag)


Details zur Publikation

Autor(en): Ah Sue J, Hasholzner R, Brendel J
Herausgeber: IEEE
Jahr der Veröffentlichung: 2018
Tagungsband: Proc. of the IEEE 5G World Forum
Seitenbereich: 1-10
Sprache: Englisch


Abstract

Prediction of control channel signaling messages during an active Long Term Evolution-Advanced (LTE-A) connection with the network is a promising technique to reduce power consumption of mobile devices. In order to reduce the prediction’s computational complexity and thus, the power consumed by the predictor itself, various dimensionality reduction algorithms are evaluated in this paper. Moreover, specific windowing and normalization pre-processing steps are proposed to support the heterogeneous binary and integer time series data of LTE control channel messages. Using a simple Feed Forward Neural Network (FFNN) predictor, four dimensionality reduction algorithms, Principal Component Analysis (PCA), Independent Component Analysis (ICA), Autoencoder (AE), and Deep AE, are compared with respect to the prediction accuracy. Experiments based on live network data show that PCA achieves the best performance and allows to successfully reduce LTE-A control channel time series data from 450 to 45 dimensions without degrading the prediction accuracy compared to a FFNN predictor without dimensionality reduction.


FAU-Autoren / FAU-Herausgeber

Ah Sue, Jonathan
Lehrstuhl für Informatik 12 (Hardware-Software-Co-Design)


Autor(en) der externen Einrichtung(en)
Intel Mobile Communications
Technische Universität München (TUM)


Zitierweisen

APA:
Ah Sue, J., Hasholzner, R., & Brendel, J. (2018). Improvements in LTE-Advanced Time Series Prediction with Dimensionality Reduction Algorithms. In IEEE (Eds.), Proc. of the IEEE 5G World Forum (pp. 1-10). Santa Clara, CA, US.

MLA:
Ah Sue, Jonathan, Ralph Hasholzner, and Johannes Brendel. "Improvements in LTE-Advanced Time Series Prediction with Dimensionality Reduction Algorithms." Proceedings of the IEEE 5G World Forum, Santa Clara, CA Ed. IEEE, 2018. 1-10.

BibTeX: 

Zuletzt aktualisiert 2018-11-08 um 02:13