Linking stress-driven microstructural evolution in nanocrystalline aluminium with grain boundary doping of oxygen

Beitrag in einer Fachzeitschrift
(Originalarbeit)


Details zur Publikation

Autorinnen und Autoren: He MR, Samudrala SK, Kim G, Felfer P, Breen AJ, Cairney JM, Gianola DS
Zeitschrift: Nature Communications
Verlag: Nature Publishing Group: Nature Communications
Jahr der Veröffentlichung: 2016
Band: 7
ISSN: 2041-1723


Abstract


The large fraction of material residing at grain boundaries in nanocrystalline metals and alloys is responsible for their ultrahigh strength, but also undesirable microstructural instability under thermal and mechanical loads. However, the underlying mechanism of stress-driven microstructural evolution is still poorly understood and precludes rational alloy design. Here we combine quantitative in situ electron microscopy with three-dimensional atom-probe tomography to directly link the mechanics and kinetics of grain boundary migration in nanocrystalline Al films with the excess of O atoms at the boundaries. Site-specific nanoindentation leads to grain growth that is retarded by impurities, and enables quantification of the critical stress for the onset of grain boundary migration. Our results show that a critical excess of impurities is required to stabilize interfaces in nanocrystalline materials against mechanical driving forces, providing new insights to guide control of deformation mechanisms and tailoring of mechanical properties apart from grain size alone.



FAU-Autorinnen und Autoren / FAU-Herausgeberinnen und Herausgeber

Felfer, Peter Prof. Dr.
Juniorprofessor für Werkstoffwissenschaften (3D-Nanoanalytik und Atomsondenmikroskopie)


Zusätzliche Organisationseinheit(en)
Interdisziplinäres Zentrum, Center for Nanoanalysis and Electron Microscopy (CENEM)


Einrichtungen weiterer Autorinnen und Autoren

University of Pennsylvania
University of Sydney


Zitierweisen

APA:
He, M.-R., Samudrala, S.K., Kim, G., Felfer, P., Breen, A.J., Cairney, J.M., & Gianola, D.S. (2016). Linking stress-driven microstructural evolution in nanocrystalline aluminium with grain boundary doping of oxygen. Nature Communications, 7. https://dx.doi.org/10.1038/ncomms11225

MLA:
He, Mo-Rigen, et al. "Linking stress-driven microstructural evolution in nanocrystalline aluminium with grain boundary doping of oxygen." Nature Communications 7 (2016).

BibTeX: 

Zuletzt aktualisiert 2019-28-05 um 13:22