Development of a low-density rhenium-free single crystal nickel-based superalloy by application of numerical multi-criteria optimization using thermodynamic calculations

Beitrag bei einer Tagung
(Konferenzbeitrag)


Details zur Publikation

Autor(en): Rettig R, Matuszewski K, Müller A, Helmer HE, Ritter N, Singer R
Herausgeber: M. Hardy, E. Huron, U. Glatzel, B. Griffin, B. Lewis, C. Rae, V. Seetharaman, S. Tin
Verlag: Minerals, Metals and Materials Society
Jahr der Veröffentlichung: 2016
Tagungsband: Superalloys 2016: Proceedings of the 13th Intenational Symposium of Superalloys
Seitenbereich: 35-44
ISBN: 9781118996669
Sprache: Englisch


Abstract


A computational alloy design method based on numerical multicriteria global optimization is presented (termed MultOPT). Its application is demonstrated by the design of a novel rhenium-free low-density superalloy called ERBO/15. This alloy has been produced and tested on a lab-scale and results on high temperature creep strength and microstructure are presented. Despite its low density of 8.4 g/cm and despite the fact that it contains no Re, the creep strength of ERBO/15 is comparable to that of the rheniumcontaining alloy CMSX-4® 1. With our MultOPT approach, in order to identify promising compositions, large compositional spaces can be scanned and the full complexity of superalloys can be taken into consideration. It is ensured that from a mathematical point of view the best possible alloy for the given requirements is found. The alloy properties are predicted by thermodynamic CALPHAD-calculations and by an empirical model for creep strength in the high-temperature, low-stress regime: The creep strength is maximized by maximizing the weighted amount of solid solution strengthening elements in the matrix and maintaining an optimum morphology and fraction of the γ′-phase. The optimization algorithm uses Kriging surrogate models for higher performance. Additionally in order to prepare the future usage of more complex alloy property models in the optimization, an existing TCP-phase precipitation model is validated experimentally within the paper.



FAU-Autoren / FAU-Herausgeber

Helmer, Harald Ernst
Technische Fakultät
Matuszewski, Kamil
Lehrstuhl für Werkstoffwissenschaften (Werkstoffkunde und Technologie der Metalle)
Müller, Alexander
Lehrstuhl für Werkstoffwissenschaften (Werkstoffkunde und Technologie der Metalle)
Rettig, Ralf Dr.-Ing.
Lehrstuhl für Werkstoffwissenschaften (Werkstoffkunde und Technologie der Metalle)
Ritter, Nils
Lehrstuhl für Werkstoffwissenschaften (Werkstoffkunde und Technologie der Metalle)
Singer, Robert Prof. Dr.-Ing.
Lehrstuhl für Werkstoffwissenschaften (Werkstoffkunde und Technologie der Metalle)


Zitierweisen

APA:
Rettig, R., Matuszewski, K., Müller, A., Helmer, H.E., Ritter, N., & Singer, R. (2016). Development of a low-density rhenium-free single crystal nickel-based superalloy by application of numerical multi-criteria optimization using thermodynamic calculations. In M. Hardy, E. Huron, U. Glatzel, B. Griffin, B. Lewis, C. Rae, V. Seetharaman, S. Tin (Eds.), Superalloys 2016: Proceedings of the 13th Intenational Symposium of Superalloys (pp. 35-44). Seven Springs, US: Minerals, Metals and Materials Society.

MLA:
Rettig, Ralf, et al. "Development of a low-density rhenium-free single crystal nickel-based superalloy by application of numerical multi-criteria optimization using thermodynamic calculations." Proceedings of the 13th International Symposium on Superalloys, SUPERALLOYS 2016, Seven Springs Ed. M. Hardy, E. Huron, U. Glatzel, B. Griffin, B. Lewis, C. Rae, V. Seetharaman, S. Tin, Minerals, Metals and Materials Society, 2016. 35-44.

BibTeX: 

Zuletzt aktualisiert 2018-21-11 um 13:50